Math 260, Fall 2018, Assignment 5
From cartan.math.umb.edu
I tell them that if they will occupy themselves with the study of mathematics, they will find in it the best remedy against the lusts of the flesh.
- - Thomas Mann, The Magic Mountain
Read:[edit]
- Section 2.3.
Carefully define the following terms, then give one example and one non-example of each:[edit]
- $\mathrm{Proj}_{\vec v}(\vec x)$.
- Composition (of two functions $f:\mathbb{R}^n\rightarrow\mathbb{R}^p$ and $g:\mathbb{R}^m\rightarrow\mathbb{R}^n$).
- Inverse (of a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$).
Carefully state the following theorems (you do not need to prove them):[edit]
- Theorem concerning parallel and perpendicular components.
- Formula for the matrix representing a rotation in $\mathbb{R}^2$.
- Theorem concerning linearity of the composition of two linear transformations.
- Formula for the matrix representing the composition of two linear transformations.
Solve the following problems:[edit]
- Section 2.2, problems 6, and 10.
- Section 2.3, problems 33, 35, 39, 43, 45, and 46.
Questions:[edit]
Solutions:[edit]
Definitions:[edit]
- Given a non-zero vector $\vec{v}\in\mathbb{R}^n$, define a linear transformation $\mathrm{Proj}_{\vec v}:\mathbb{R}^n\rightarrow\mathbb{R}^n$ by the formula $\mathrm{Proj}_{\vec v}(\vec x) = \vec{x}^{\parallel} = \frac{\vec{x}\cdot\vec{v}}{\vec{v}\cdot{\vec{v}}}\vec{v}$. We refer to this transformation as orthogonal projection along $\vec{v}$. (Note that in spite of the name, the output of the orthogonal projection is parallel to $\vec v$, not perpendicular to it.)
- Given a function $f:\mathbb{R}^n\rightarrow\mathbb{R}^p$ and a function $g:\mathbb{R}^m\rightarrow\mathbb{R}^n$, the composition of $f$ and $g$ is the function $(f\circ g):\mathbb{R}^m\rightarrow\mathbb{R}^p$ defined by the formula $(f\circ g)(\vec x)=f(g(\vec x))$.
- Given a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, an inverse of $f$ is another function $f^{-1}:\mathbb{R}^n\rightarrow\mathbb{R}^m$ such that for any $\vec x$, we have $f^{-1}(f(\vec x))=\vec x$ and for any $\vec y$ we have $f(f^{-1}(\vec y))=\vec y$.
Theorems:[edit]
- Given a non-zero vector $\vec v$ and any other vector $\vec x$, there exist unique vectors $\vec{x}^{\parallel}$ and $\vec{x}^{\perp}$ such that (i) $\vec{x}^{\parallel}$ is a scalar multiple of $\vec{v}$, (ii) $\vec{x}^{\perp}$ is orthogonal to $\vec v$, and (iii) $\vec x = \vec{x}^{\parallel}+\vec{x}^{\perp}$. These are given by the formulas $$\vec{x}^{\parallel}=\frac{\vec{x}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\vec{v}\qquad\vec{x}^{\perp}=x-\frac{\vec{x}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\vec{v}.$$
- The matrix of rotation through the counterclockwise angle $\theta$ in $\mathbb{R}^2$ is $\begin{bmatrix}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{bmatrix}.$
- The composition of two linear transformations is linear.
- The matrix representing the composite transformation is the product of the matrices representing the transformations. In symbols, let us denote the matrix represeting any linear transformation $f$ by $[f]$; then $$[f\circ g] = [f][g].$$