Math 360, Fall 2021, Assignment 9
From cartan.math.umb.edu
The moving power of mathematical invention is not reasoning but the imagination.
- - Augustus de Morgan
Read:
- Section 8.
Carefully define the following terms, then give one example and one non-example of each:
- Permutation (of a set $S$).
- $\mathrm{Sym}(S)$ (the symmetric group on $S$).
- $S_n$ (the symmetric group on $n$ letters).
- Order (of a group; see the text for this definition).
- $D_n$ (the $n$th dihedral group; see the text).
Carefully state the following theorems (you do not need to prove them):
- Containment criterion for subgroups of $\mathbb{Z}_n$.
- Theorem relating $\left\langle[a]\right\rangle$ to $\left\langle[\mathrm{gcd}(a,n)]\right\rangle$ (in $\mathbb{Z}_n$).
- Classification of subgroups of $\mathbb{Z}_n$ ("Every subgroup of $\mathbb{Z}_n$ is generated by a unique...").
- Theorem concerning the order of $S_n$.
Solve the following problems:
- Section 6, problems 23, 25, and 27.
- Section 8, problems 1, 3, 5, 7, 9, 11, 13, 17, 30, 31, and 33.
- In class, we listed all permutations of the set $\{1,2,3\}$. Now, make a list of all permutations of the set $\{a,b,c\}$. Do you see any relationship between the two lists?
- Suppose $S$ and $T$ are sets, and that $f:S\rightarrow T$ is a bijection. Define a function $\phi:\mathrm{Sym}(S)\rightarrow\mathrm{Sym}(T)$ by the formula $\phi(\pi)=f\circ\pi\circ f^{-1}$. Show that $\phi(\pi\circ\sigma)=\phi(\pi)\circ\phi(\sigma)$.
- With notation as above, take $S=\{1,2,3\}$ and $T=\{a,b,c\}$, and let $f:S\rightarrow T$ be given by $f(1)=a, f(2)=b, f(3)=c$. For any specific $\pi\in\mathrm{Sym}(S)$ (e.g. for $\pi=\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}$), compute the permutation $\phi(\pi)\in\mathrm{Sym}(T)$. Do this in several more specific cases.
- Returning to the general case, define a new function $\psi:\mathrm{Sym}(T)\rightarrow\mathrm{Sym}(S)$ by the formula $\psi(\tau)=f^{-1}\circ\tau\circ f$. Show that $\phi\circ\psi$ and $\psi\circ\phi$ are both the identity maps, so that $\psi$ is the inverse of $\phi$. (Note in particular that this shows that $\phi$ is an invertible function and hence is a bijection.)
- Prove that $\phi$ is an isomorphism from $(\mathrm{Sym}(S),\circ)$ to $(\mathrm{Sym}(T),\circ)$.
- Finally, show that whenever $S$ and $T$ are equinumerous sets, $\mathrm{Sym}(S)$ and $\mathrm{Sym}(T)$ are isomorphic groups.
Questions:
Solutions:
Definitions:
- Permutation (of a set $S$): Let $S$ be a set. A permutation of $S$ is a bijection from $S$ to itself.
- $\mathrm{Sym}(S)$ (the symmetric group on $S$): $U(Fun(S, S), \circ) = (Sim(S), \circ)$. That is, $Sym(S)$ means the permutation of $S$, regarded as a group under function composition. It's called the symmetric group on $S$.
- $S_n$ (the symmetric group on $n$ letters): $Sym(\{1,2,3 \cdots ,n\}) = S_n$.
- Order (of a group; see the text for this definition): the number of elements present in that group $|S|$.
- $D_n$ (the $n$th dihedral group; see the text): the group of symmetries of the regular n-gon.
Theorem:
- Containment criterion for subgroups of $\mathbb{Z}_n$: In $\mathbb Z_n, \left\langle [a] \right\rangle \subseteq \left\langle [b] \right\rangle \iff gcd(b,n) | a.$
- Theorem relating $\left\langle[a]\right\rangle$ to $\left\langle[\mathrm{gcd}(a,n)]\right\rangle$ (in $\mathbb{Z}_n$): In $\mathbb Z_n, \left\langle [a] \right\rangle = \left\langle [gcd(a,n)] \right\rangle$.
- Classification of subgroups of $\mathbb{Z}_n$ ("Every subgroup of $\mathbb{Z}_n$ is generated by a unique..."): Each subgroup has a unique generator (between $1$ and $n$) which divides $n$.
- Theorem concerning the order of $S_n$: $|S_n| = n!$.
Book Problems:
23. 0 1 2 3 4 6 9 12 18
25. 4
27. 6
1. (1 2 3 6 5 4)
3. (3 4 1 6 2 5)
5. (2 6 1 5 4 3)
7. 2
9. (1 2 3 4 5 6)
11. {1,2,3,4,5,6}.
13. {1,5}.
17. 4*1*3*2 = 24.
30. yes
31. no
33.no.
Other Problems:
- (a b c) (a c b) (b a c) (b c a) (c b a) (c a b)
- $\phi(\pi)=f\circ\pi\circ f^{-1}$, $\phi(\pi \circ \sigma)=f\circ \pi \circ \sigma \circ f^{-1}$, $\phi(\pi) \circ \phi(\sigma)= f\circ \pi \circ f^{-1} \circ f \circ \sigma \circ f^{-1}$, $= f\circ \pi \circ (f^{-1} \circ f) \circ \sigma \circ f^{-1}$, $ = f\circ \pi \circ \sigma \circ f^{-1} = \phi(\pi \circ \sigma)$.
- $\begin{pmatrix}1&2&3\\a&b&c\end{pmatrix} \circ \begin{pmatrix}1&2&3\\3&2&1\end{pmatrix} = \begin{pmatrix}1&2&3\\c&b&a\end{pmatrix}$, $\begin{pmatrix}1&2&3\\c&b&a\end{pmatrix} \circ \begin{pmatrix}1&2&3\\a&b&c\end{pmatrix}^{-1}$ $= \begin{pmatrix}1&2&3\\c&b&a\end{pmatrix} \circ \begin{pmatrix}a&b&c\\1&2&3\end{pmatrix} = \begin{pmatrix}a&b&c\\c&b&a\end{pmatrix} \in Sym(T)$
- Similar as second problem
- Injection and Surjection and Operation