Difference between revisions of "Math 440, Fall 2014, Assignment 1"
From cartan.math.umb.edu
(→Definitions:) |
(→Definitions:) |
||
Line 36: | Line 36: | ||
==Solutions:== |
==Solutions:== |
||
====Definitions:==== |
====Definitions:==== |
||
#<u>Cartesian Product of Two Sets:</u><P>Let \(A\) and \(B\) be sets. The cartesian product of \(A\) and \(B\), \(A \times B\), is the set:$$ |
|||
⚫ | |||
A \times B = \{(a,b)| a\ in A , b \in B\} |
|||
$$</p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Power Set of a Set:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Equinumerous Sets:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
⚫ | |||
#<u>Uncountable Set:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Cardinality of the Continuum:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Partial Order:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Maximal Element of a Poset:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Largest Element of a Poset:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
#<u>Chain in a Poset:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p> |
|||
====Theorems:==== |
====Theorems:==== |
Revision as of 16:42, 5 September 2014
The beginner ... should not be discouraged if ... he finds that he does not have the prerequisites for reading the prerequisites.
- - P. Halmos
Carefully define the following terms, then give one example and one non-example of each:
- Cartesian product (of two sets).
- Power set (of a set).
- Equinumerous (sets).
- Countable set.
- Uncountable set.
- Cardinality of the continuum.
- Partial order.
- Maximal element (of a partially ordered set).
- Largest element (of a partially ordered set).
- Chain (in a partially ordered set).
Carefully state the following theorems (you need not prove them):
- Cantor-Bernstein Theorem.
- Cantor's Theorem.
- Continuum Hypothesis (of course this is not a theorem, though it is sometimes taken as an axiom).
- Axiom of Choice (see above).
- Zorn's Lemma.
Solve the following problems:
- Prove Cantor's Theorem (exercise 1I.1 contains many hints).
- Problems 1E and 1H (you will use the results of 1H incessantly for the rest of the semester).
Questions:
Solutions:
Definitions:
- Cartesian Product of Two Sets:
Let \(A\) and \(B\) be sets. The cartesian product of \(A\) and \(B\), \(A \times B\), is the set:$$ A \times B = \{(a,b)| a\ in A , b \in B\} $$
Example:
Non-Example:
- Power Set of a Set:
Example:
Non-Example:
- Equinumerous Sets:
Example:
Non-Example:
- Countable Set:
Example:
Non-Example:
- Uncountable Set:
Example:
Non-Example:
- Cardinality of the Continuum:
Example:
Non-Example:
- Partial Order:
Example:
Non-Example:
- Maximal Element of a Poset:
Example:
Non-Example:
- Largest Element of a Poset:
Example:
Non-Example:
- Chain in a Poset:
Example:
Non-Example: