Difference between revisions of "Math 440, Fall 2014, Assignment 1"

From cartan.math.umb.edu
(Definitions:)
(Definitions:)
Line 36: Line 36:
==Solutions:==
==Solutions:==
====Definitions:====
====Definitions:====
#<u>Cartesian Product of Two Sets:</u><P>Let \(A\) and \(B\) be sets. The cartesian product of \(A\) and \(B\), \(A \times B\), is the set:$$
#<u>Name</u><p></p>t<p><u>Example</u></p><p>t</p><p><u>Non-Example</u></p><p>t</p>
A \times B = \{(a,b)| a\ in A , b \in B\}
$$</p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Power Set of a Set:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Equinumerous Sets:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Countable Set:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Uncountable Set:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Cardinality of the Continuum:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Partial Order:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Maximal Element of a Poset:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Largest Element of a Poset:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>

#<u>Chain in a Poset:</u><P></p><p><u>Example:</u></p><P></p><p><u>Non-Example:</u></p><P></p>


====Theorems:====
====Theorems:====

Revision as of 16:42, 5 September 2014

The beginner ... should not be discouraged if ... he finds that he does not have the prerequisites for reading the prerequisites.

- P. Halmos

Carefully define the following terms, then give one example and one non-example of each:

  1. Cartesian product (of two sets).
  2. Power set (of a set).
  3. Equinumerous (sets).
  4. Countable set.
  5. Uncountable set.
  6. Cardinality of the continuum.
  7. Partial order.
  8. Maximal element (of a partially ordered set).
  9. Largest element (of a partially ordered set).
  10. Chain (in a partially ordered set).

Carefully state the following theorems (you need not prove them):

  1. Cantor-Bernstein Theorem.
  2. Cantor's Theorem.
  3. Continuum Hypothesis (of course this is not a theorem, though it is sometimes taken as an axiom).
  4. Axiom of Choice (see above).
  5. Zorn's Lemma.

Solve the following problems:

  1. Prove Cantor's Theorem (exercise 1I.1 contains many hints).
  2. Problems 1E and 1H (you will use the results of 1H incessantly for the rest of the semester).
--------------------End of assignment--------------------

Questions:

Solutions:

Definitions:

  1. Cartesian Product of Two Sets:

    Let \(A\) and \(B\) be sets. The cartesian product of \(A\) and \(B\), \(A \times B\), is the set:$$ A \times B = \{(a,b)| a\ in A , b \in B\} $$

    Example:

    Non-Example:

  1. Power Set of a Set:

    Example:

    Non-Example:

  1. Equinumerous Sets:

    Example:

    Non-Example:

  1. Countable Set:

    Example:

    Non-Example:

  1. Uncountable Set:

    Example:

    Non-Example:

  1. Cardinality of the Continuum:

    Example:

    Non-Example:

  1. Partial Order:

    Example:

    Non-Example:

  1. Maximal Element of a Poset:

    Example:

    Non-Example:

  1. Largest Element of a Poset:

    Example:

    Non-Example:

  1. Chain in a Poset:

    Example:

    Non-Example:

Theorems:

Book Problems: