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Our last class ended with Kronecker’s Theorem: If f ∈ F [x] is non-constant,
then there exists a field extension F → E in which f has a root. One constructs
this extension by first factoring f as a product of irreducibles in F [x], say
f = p1 . . . pk, then putting E = F [x]/ 〈p1〉. This will always be a field precisely
because p1 is irreducible. Also, the standard generator α = x + 〈p1〉 satisfies
p1(α) = 0 so f(α) = 0.

As the next example shows, the extension field E is not unique; at the very
least it can depend on which irreducible factor of f we use to contruct it.

Example 1. Take F = Q and f = x4−5x2+6. Over Q we have the factorization
f = (x2 − 2)(x2 − 3). If we put E1 = Q[x]/

〈
x2 − 2

〉
then over E1 we have the

further factorization f = (x− α)(x+ α)(x2 − 3).
We would like to know whether the quadratic x2 − 3 has any further fac-

torization over E1. Since the degree is low, this is equivalent to finding out
whether x2 − 3 has any roots in E1. If aα+ b were such a root, we would have
(aα + b)2 = a2α2 + 2abα + b2 = 2abα + (2a2 + b2) = 0α + 3 implying 2ab = 0
and 2a2 + b2 = 3. If a = 0 then b2 = 3, contradicting the fact that b is rational,
while if b = 0 then a2 = 3/2, contradicting the fact that a is rational. Therefore
there is no such root, and f = (x − α)(x + α)(x2 − 3) is a factorization into
irreducibles over E1.

Alternatively, we could have put E2 = Q[x]/
〈
x2 − 3

〉
. Denoting the stan-

dard generator x +
〈
x2 − 3

〉
by β we have the factorization f = (x2 − 2)(x −

β)(x+β) over E2. By an argument similar to that given above, the factor x2−2
has no roots in E2 so this is a complete factorization over E2.

Observe that E1 and E2 cannot be isomorphic extensions, since E1 contains
an element that squares to 2, while E2 does not.

This example shows that the extension constructed in the proof of Kro-
necker’s Theorem is unsatifying in at least two ways: it is not unique, even up
to isomorphism, and it may not be large enough to contain “all” the roots of f .

Definition 2. Suppose f ∈ F [x] is non-constant, and F → E is a field exten-
sion. We say that f splits over E if f can be written as a product of linear
factors in E[x].

Example 3. The polynomial f = x2 − 4 splits over Q, since we can write
f = (x− 2)(x+ 2). By contrast, g = x2 − 5 does not split over Q.
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Example 4. Let f and E1 be as in example 1. Then f does not split over E1

even though it has a root there.

Example 5. Let f be as in example 1. Then f splits over R, since over the
reals, f can be factored as f = (x−

√
2)(x+

√
2)(x−

√
3)(x+

√
3).

Definition 6. Suppose f ∈ F [x] is not constant, and F → E is a field extension.
We say that F → E is a splitting field for f if

1. The polynomial f splits over E, and

2. The extension F → E is generated by roots of f , i.e. the smallest subfield
of E containing (the image of) F and all of the roots of f is E itself.

Example 7. Let f and E1 be as in example 1. Then Q→ E1 is not a splitting
field for f because f does not split over E1. Also, Q→ C is not a splitting field
for f : even though f does split over C, there are many proper subfields (e.g. R)
that contain Q and all the roots of f .

In the previous example, E1 is “too small” to be a splitting field because f
does not actually split over it. By contrast, C is “too large” to be a splitting
field because f can still be split over proper subfields. (We shall see that R is
also too large to be a splitting field for f). It seems reasonable to expect that
there should be some field extension that is “just right” for splitting any given f .
This turns out to be so; our main result for today is that splitting fields always
exist, and in fact they are unique up to a suitable notion of isomorphism.

Definition 8. Suppose (F,E1, ι1) and (F,E2, ι2) are extensions of the same
base field. We say that these extensions are isomorphic if there exists a field
isomorphism φ : E1 → E2 with φ ◦ ι1 = ι2.

Example 9. Take F = Q. Put E1 = Q[x]/
〈
x2 − 2

〉
with ι(a) = (a+0x+0x2+

. . . ) +
〈
x2 − 2

〉
(i.e. we send the rational number a to the coset of the constant

polynomial with value a).
Next, put E2 = {r + s

√
2 | r, s ∈ Q} (here

√
2 denotes the positive real

number whose square is 2, so that E2 is a subset of R). One verifies that E2

is in fact a subfield of R. (The hardest part of the verification is showing that
every non-zero element is a unit. For this one uses the calculation 1

r+s
√
2

=

r−s
√
2

r2−2s2 = r
r2−2s2 + −s

r2−2s2
√

2.) Define ι2 : Q→ E2 by ι2(r) = r + 0
√

2.
We claim that (Q, E1, ι1) and (Q, E2, ι2) are isomorphic field extensions.

To see this, define a map ψ : Q[x] → R by the formula ψ(a0 + a1x + a2x
2 +

a3x
3 . . . ) = a0+a1

√
2+a2

√
2
2
+a3
√

2
3
+· · · = (a0+2a2+. . . )+(a1+2a3+. . . )

√
2.

Evidently im(ψ) = E2. It is straightforward though tedious to verify that ψ is a
unital ring homomorphism. Next, ker(ψ) is an ideal of Q[x] that contains x2−2,
so it must be a principal ideal, generated by some divisor of x2 − 2. But x2 − 2
is irreducible over Q, so this divisor must actually be an associate of x2 − 2,
from which it follows that ker(ψ) =

〈
x2 − 2

〉
. Now by applying the Fundamental

Theorem on Homomorphisms, we get a monomorphism ψ̂ : E1 → R whose image

2



is E2; restricting the codomain gives an isomorphism from E1 to E2. Finally,
ψ̂(ι1(r)) = ψ̂((r + 0x + . . . ) +

〈
x2 + 1

〉
) = ψ(r + 0x + . . . ) = r + 0

√
2 = ι2(r),

so ψ̂ is indeed an isomorphism of field extensions.

Remark 10. In the previous example, the field E1 is a rather “abstract” object;
its elements are cosets of polynomial expressions modulo multiples of a fixed
modulus, and no one who has not made a rather extensive study of abstract
algebra will be able to comprehend it. On the other hand, E2 is very “concrete;”
it is an actual set of real numbers, and it could be presented to middle-schoolers.

Since E1 and E2 are isomorphic, why should we ever think about such a
complicated object as E1? The answer is that E1 is much better suited to
machine-based symbolic computation. An element of E1 can be stored on a ma-
chine by storing a pair of rational numbers (the coefficients in the expression
r + sx +

〈
x2 − 2

〉
), and this in turn can be done by storing four integers (the

numerators and denominators of r and s), which can be done exactly, with no
approximation whatsoever and hence no problems associated with accumulat-
ing roundoff error. By contrast, an element of E2 is an actual real number,
typically an irrational one, and one must inevitably make approximations when
manipulating elements of E2.

The fact that these field extensions are isomorphic means that we can have
the best of both worlds. When making calculations, we can work with elements
of E1 and can manipulate them all day long without fear of accumulating errors.
Then, when all of our calculations are made, we can push our “final answers”
through the isomorphism ψ̂ to obtain decimal approximations suitable for engi-
neering purposes.

We are nearly ready to prove that splitting fields exist and are unique up to
isomorphism, but we need one additional technical tool for the proof.

Definition 11. Suppose f ∈ F [x] is not constant. The non-split part of f over
F , denoted NSF (f), is the product of the non-linear irreducible factors of f
in F [x]. (If there are no such factors, then by convention we take the empty
product to be 1.)

Example 12. We shall compute NSQ(x5 − 3x3 + x). The prime factorization
over Q is x5 − 3x3 + x = x(x− 2)(x+ 2)(x2 + 1). Discarding the linear factors
gives NSQ(x5 − 3x3 + x) = x2 + 1.

Remark 13. The non-split part is actually defined only up to unit multiples,
since we are always free to move units around in the factorization. For instance,
in the example above, we could have factored as x5 − 3x3 + x =

(
1
2x
)

(x −
2)(x+ 2)(2x2 + 2) which would have given NSQ(x5 − 3x3 + x) = 2x+ 2. Thus,
technically speaking, we should think of NSF (f) not as a single polynomial but
as an associate class of polynomials. However, all polynomials in an associate
class have the same degree, so deg(NSF (f)) is an unambiguous integer; this
will become important below.
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Example 14. We now compute NSC(x5 − 3x3 + x). The prime factorization
over C is x5 − 3x3 + x = x(x − 2)(x + 2)(x + i)(x − i). All factors are linear,
giving NSC(x5 − 3x3 + x) = 1.

Example 15. Let f and E1 be as in example 1. Then, making use of the
factorization given there, we obtain NSE1

(f) = x2 − 3.

We are now ready to prove our central result:

Theorem 16. Suppose F is a field and f ∈ F [x] is a non-constant polynomial
with coefficients in F . Then f has a splitting field. Moreover, splitting fields
are unique up to isomorphism of field extensions.

Proof. The proof is by induction on deg(NSF (f)).
In the base case, deg(NSF (f)) = 0, implying that all of the irreducible

factors of f are linear, i.e. f already splits over F . In this case we take E = F
and we take ι to be the identity map. Certainly f splits over E. Also the
smallest subfield of E containing F (and all the roots of f) is evidently E itself,
since E = F . This proves existence.

For uniqueness, suppose that (F,E′, ι′) is a second splitting field. Since f
already splits over F , all of the roots of f in E′ already lie in the image ι′[F ].
Since E′ is generated by the roots of f , this forces E′ = ι′[F ] so that in fact ι′

is a field isomorphism. Define φ : E → E′ by the simple formula φ = ι′ (recall
that E = F ). Since ι is the identity map, we do indeed have φ ◦ ι = ι′ and thus
φ is an isomorphism of extensions. This concludes the proof in the base case.

Now we turn to the inductive step. Since we are not in the base case we
have deg(NSF (f)) > 0. In particular, f must have some non-linear irreducible
factor p1. Put E1 = F [x]/ 〈p1〉 and ι1(a) = (a + 0x + 0x2 + . . . ) + 〈p1〉. Since
p1 has a root in E1, when factoring f over E1 it will be possible to separate
at least one additional linear factor in E1[x], beyond those in F [x]. Thus,
deg(NSE1(f)) < deg(NSF (f)).

Temporarily regarding E1 as a new base field, we can invoke the inductive
hypothesis and assume that there is a splitting field (E1, E, ι2) over E1. The
composite map ι = ι2 ◦ ι1 takes F to E, so we can regard E as an extension of
F . To complete the existence proof, we need to show that (i) f splits over E,
and (ii) E is generated by ι[F ] and the roots of f . But (i) is automatic because
(E1, E, ι2) is a splitting field and thus f does indeed split over E. For (ii), note
that E1 = {a0 + a1α+ · · ·+ adeg(p1)−1α

deg(p1)−1 | ai ∈ F} and α is a root of f ,
so any subfield of E containing ι[F ] and the roots of f will contain all of ι2[E1]
and then, by induction, it will be all of E. This completes the existence proof.

For uniqueness, suppose (F,E′, ι′) is another splitting field for f . Then
unique factorization implies that p1 splits over E′; in particular, p1 has some
root β ∈ E′. Define a ring homomorphism ψ : F [x] → E′ by the formula
ψ(a0 + a1x + a2x

2 + . . . ) = ι′(a0) + ι′(a1)β + ι′(a2)β2 + . . . . By construction,
ψ(p1) = 0 so ker(ψ) is generated by some divisor of p1. But p1 is irreducible so in
fact ker(ψ) = 〈p1〉 and now the Fundamental Theorem of Homomorphisms gives

a monomorphism ψ̂ : E1 → E′. Thus, we can regard E as an extension of E1.
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Once again we temporarily regard E1 as the base field. Since f splits over E and
is generated (over F ) by roots of f , it is also generated (over E1) by roots of f

and thus (E1, E
′, ψ̂) is a splitting field for f . By induction, there must be a field

isomorphism φ : E → E′ with φ◦ ι2 = ψ̂. But then φ◦ ι = φ◦ ι2 ◦ ι1 = ψ̂ ◦ ι1 = ι′

and so, shifting back to the perspective in which F is the base field, φ is still an
isomorphism of field extensions. This completes the uniqueness proof.

Example 17. Returning to the setup of example 1, we shall compute the
splitting field of f = x4 − 5x2 + 6 over Q. As in that example, we put
E1 = Q[x]/

〈
x2 − 2

〉
and we denote the standard generator x +

〈
x2 − 2

〉
by

α. Factoring f over E1 gives f = (x − α)(x + α)(x2 − 3), so E1 is not yet the
splitting field.

Now put E = E1[x]/
〈
x2 − 3

〉
and denote the standard generator x+

〈
x2 − 3

〉
by β. Factoring f over E gives f = (x− α)(x + α)(x− β)(x+ β), so indeed f
splits over E.

To see that E is generated by the roots of f , it is useful to make a more
explicit description of the elements of E. By construction, we have

E = {b0 + b1β | b0, b1 ∈ E1}

with “rule of arithmetic” β2 = 3 but also

E1 = {a0 + a1α | a0, a1 ∈ Q}

with “rule of arithmetic” α2 = 2. Combining these descriptions gives

E = {(a+ bα) + (c+ dα)β | a, b, c, d ∈ Q}
= {a+ bα+ cβ + dαβ | a, b, c, d ∈ Q}

with “rules of arithmetic” α2 = 2 and β2 = 3. This description makes it clear
that the smallest subfield of E containing Q and both α and β is E itself. Since
α and β are both roots of f , this shows that E is the splitting field of F .

Remark 18. As in example 9, it is useful to consider alternative (but isomor-
phic) splitting fields for f . Thus, consider the set of real numbers

E′ = {a+ b
√

2 + c
√

3 + d
√

6 | a, b, c, d ∈ Q}.

It is straightforward to show that E′ is a unital subring of R, and that it is in fact
isomorphic to E, via the isomorphism a+bα+cβ+dαβ 7→ a+b

√
2+c
√

3+d
√

6.
Then, as in example 9, it becomes reasonable to ask why anyone would

work with the highly abstract object E rather than the highly concrete set of
real numbers E′. As before, E is more suitable for machine computation—its
elements can be stored without approximation and without risk of accumulating
error. In addition, it is not so easy to recognize that E′ is a field, except by
observing that it is isomorphic to E. Specifically, there is no obvious method to
compute multiplicative inverses in E′. However, in E, we can use the extended
Euclidean algorithm to invert elements. Thus, by porting the inversion problem
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across the isomorphism E ' E′, we do obtain an inversion method for E′, but
it would be quite difficult to discover this method if we had no knowledge of the
“abstract” object E.
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