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In the previous lecture we introduced the idea of the splitting field of a
polynomial, which is a field extension F' — E which is “just big enough” to allow
factorization of f € F[z] as a product of linear factors. In practice these are
often used for lossless machine representation of expressions involving the roots
of f; our construction of splitting fields implies that whenever the arithmetic
of F' can be exactly implemented on computers, so can the arithmetic of the
splitting field.

In the present lecture we zoom back out to the theory of a general field
extension F' — E. We shall be particularly concerned with the structure and
symmetry of a general extension. By the former we mean the usual idea of
determining all of the substructures and how they fit together—in this case we
shall be concerned with the problem of describing the subfields of E that contain
the image of F'. By the latter we mean the theory of automorphisms of the field
extension, which we shall define momentarily. The automorphisms of a given
field extension turn out to form a group under composition, the so-called Galois
group of the extension, and it is reasonable to think of this as describing the
“symmetries of the extension” in the same way that groups of rigid motions
describe the symmetries of geometric figures.

The key insights of Evariste Galois, summarized here in modern language
that was not available to Galois himself, were these: (i) the problem of solv-
ing polynomial equations is closely related to the structure theory of splitting
fields, and (ii) the structure theory of field extensions is closely related to the
structure theory of their Galois groups (which in the case of splitting fields turn
out to be finite objects). In this way, Galois was able to “reduce” the problem
of solving polynomial equations to a structure problem in finite group theory.
This may not sound like an advance! But in fact it was hugely successful and
essentially closed the book on classical algebra, by fully solving its central prob-
lem. Furthermore, it marked the modern re-emergence of the ancient idea, now
pervasive in the physical sciences, that difficult problems are best approached
by first analyzing their symmetries, including (since the symmetries described
by the Galois group are far from obvious) any possible “hidden symmetries.”

We now turn to the actual definitions.

Definition 1. Let (F, E, ) be a field extension. An automorphism of (F, E, ) is
an isomorphism from (F, E, ) to itself, i.e. a unital ring isomorphism ¢ : E — E
satisfying ¢ ot = «.



Example 2. Let (F, E,t) be any field extension, and let ¢ : E — E be the
identity map ¢(x) = z. (Evidently it is best not to denote this by the usual
letter ¢ in this context.) Then ¢ is a unital ring isomorphism and we certainly
have ¢por = ¢. Thus, ¢ is an automorphism of (F, F,¢), usually called the trivial
automorphism.

Example 3. Define ¢ : R — C by the formula ¢(a) = a 4+ 0i. Many teachers of
elementary mathematics regard R as an actual subset of C and would describe
¢t as an “inclusion map.” As we now know, this is not strictly correct, but it is
true that ¢ is a unital ring monomorphism, so that (R, C, ) is a legitimate field
extension. Now define v : C — C by the formula v(a + bi) = a — bi (this map is
usually called complex conjugation). It is interesting and not especially difficult
to verify that v is a unital ring isomorphism from C to itself. (If you are lazy
then you can find this verification carried out for you in many places, including
page 2 of this excellent introduction to complex arithmetic.) Moreover, we have
v((a)) = v(a+0i) = a—0i = a+ 0i = «(a), so indeed yor = ¢ and v is a
legitimate automorphism of the extension (R, C, ).

Remark 4. It is helpful in some ways to know that the automorphism of the
last example has a geometric visualization. If we identify C with the Euclidean
plane in the usual manner (i.e. the complex number a + bi is identified with the
plane point (a, b)), then « is simply reflection across the real axis, which partly
explains why people speak of automorphisms as “symmetries” of field extensions
(even though in case of a general field extension there is no straightforward
geometric visualization).

Remark 5. It is also helpful to meditate on the fact that the automorphism
of the previous example leaves all points of the real axis fized in place. This is
related to the fact that yo. = . Indeed, any point of the real axis has the form
a + 0i = «(a), so the condition that all such points are fixed by « is equivalent
to the condition y(:(a)) = ¢(a). This is the real significance of the condition
¢ ot = ¢ occurring in the definition—it is equivalent to the condition that ¢
leaves all elements of the image of F within E fixed in place. (This is a general
principle not confined to this particular example, though in this example it is
particularly easy to visualize.)

Example 6. Put
F={a+dv2|a,deQ}

and
E:{a—l—b%—&—c%—i—d%—i—e%—i—f{s/@|a7b,c,d,e,fEQ}.

It is not too hard to see that both F and E are subfields of R. (Indeed, F' is
isomorphic to the field Q[xz]/ <CL’2 — 2> while E is isomorphic to quotient ring
Qlz]/ (2® — 2). One uses Eisenstein’s Criterion (Theorem 23.15 of our text) to
see that 2% — 2 is irreducible over Q and thus that E really is a field.) Moreover,
since /8 = v/2 we see that F is actually a subset of E. Letting ¢ : F — F
denote the inclusion map, we obtain a field extension (F, E, ).
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It is possible though somewhat tedious to verify that the map
H(a+bV2+cVA+dV8+eV/164 fV/32) = a—bV/2+cV/4—dV/8+ev16— fV/32

is a unital ring isomorphism from E to itself. (I do not recommend attempting
this verification by brute force; the verification is greatly aided by passing to
the abstract models of E and F' described a moment ago and then making a
certain clever use of the Fundamental Theorem of Homomorphisms.)

However, ¢ is not an automorphism of the extension (F, F, ) since ¢(¢(a +
dv?2)) = ¢(a + dv/8) = a — d+/8 which is typically not equal to t(a + dv/2),
and hence ¢ ot # (. This is a rather technical way of expressing the simple
observation that many points of the image of F' are being moved around by ¢,
which is specifically forbidden by the definition. Again, the requirement that
¢ ot = 1 is equivalent to the requirement that extension automorphisms must
leave all points of the image of F' fized in place. Philosophically, the idea is that
an extension automorphism not only preserves the intrinsic structure of E itself,
but also preserves the specific manner in which the base field is embedded inside
E. On a technical level, this condition turns out to be important to establishing
the basic properties of the Galois Correspondence (see below).

Theorem 7. The set of automorphisms of a given field extension forms a group
under composition.

Proof. We already know that the identity map is always an extension automor-
phism. It is straightforward though tedious to verify that the inverse of a unital
ring isomorphism is a unital ring isomorphism, and that the composition of two
unital ring isomorphisms is a unital ring isomorphism. For the rest, suppose
that ¢ and ¢ are automorphisms of the extension (F, F,¢). Then

(Po)or=go (Yo
=¢olL

= L.

Also, applying the function ¢~! to both sides of the equation ¢(i(a)) = v(a)
gives immediately that ¢! os = ¢.

Taken together, these facts imply that the set of automorphisms of (F, E, ¢)
is in fact a subgroup of the permutation group Sym(FE). O

Definition 8. The group of automorphisms of the field extension (F, E,¢) is
called its Galois group, and is denoted Gal(F, E, ) or (if it is clear from context
and we do not wish to waste a symbol on the embedding ¢) Gal(F — E) or in
some books, Galp(FE).

Example 9. Let us compute Gal(R,C, ).

We have already seen that the identity map e : C — C and the complex
conjugation map 7 : C — C are automorphisms of this extension. In fact these
are the only automorphisms of this extension. To see this, suppose v is any
automorphism, and consider the equation > = —1. Applying 1 to both sides



gives (1(i))? = —1 (remember that ¢ must leave real numbers fixed!) and thus
¥(i) = +i.

If ¢ (i) = i then we must have ¥(a + bi) = ¥ (a) +1(b)y (i) = a+ bi (because
¥ fixes real numbers) and thus ) = e. On the other hand, if ¢(i) = —i then a
similar argument shows that ¥(a + bi) = a — bi and thus ¢ = ~.

This shows that Gal(R,C,:) = {e,v} is a two-element group and is thus
isomorphic to Zs. (It is easy and fun to play the Sudoku game for this group
to find its table, and then to verify explicitly that vy o~y = e.)

Remark 10. It is a striking fact that even though both R and C are infinite
fields, the Galois group of R — C turns out to be a finite group. Although there
do exist field extensions with infinite Galois groups, it is not too hard to prove
that splitting fields always have finite Galois groups.

Here is a sketch of the argument: suppose F' — FE is a splitting field for
f € F[z], and let S denote the set of roots of f in E. Note that S is always
a finite set; indeed by the Factor Theorem, its cardinality is bounded above
by deg(f). By an argument similar to the one given in the previous example,
any extension automorphism must permute the elements of S. Better still,
specifically because E is generated by F and S, any extension automorphism
is determined everywhere by the manner in which it permutes the elements
of S. (This is analogous to the principle that a symmetry of a polygon is
determined everywhere by the manner in which it permutes the vertices.) This
not only shows that the Galois group is finite, it also exhibits an explicit finite
permutation model for it, enabling machine calculations in the Galois group if
these are necessary.

The previous example is a special case of this idea. Indeed, R — C is the
splitting field of 22+ 1, and we have S = {i, —i}, a two-element set. The identity
automorphism e is modeled by the identity permutation, while the conjugation
automorphism v is modeled by the swap.

Definition 11. (The Galois Correspondence) Put G = Gal(FF — FE), and
suppose H is a subgroup of G. The fized field of H is the set of all points of F
that are left fixed by every element of H. In symbols,

¢(H)={e € E|Vh € H,h(e) = e}.

(N.B.: here we are recycling the symbol ¢—the function ¢ defined here is not
itself an extension automorphism. In this context the symbol ¢ is merely a
Greek mnemonic for fized.)

The set ¢(H) is evidently a subset of E, and it is straightforward to show
that it is in fact a subfield of F that contains the image of F', i.e. it is a so-called
subextension of (F, E, ). Thus, ¢ itself is a function from the set of subgroups
of Gal(F, E,:) to the set of subextensions of (F, E,:). This function is called
the Galois Correspondence.

Example 12. Let us compute the Galois Correspondence for R — C. The
Galois group is the two-element group G = {e,v}. This has only two subgroups,
namely the trivial subgroup {e} and the improper subgroup {e,v}.



First let us compute ¢({e}). By definition, this consists of all complex
numbers that are fixed by e. But every complex number is fixed by e, yielding
o({e}) = C.

Next we tackle ¢({e,v}). This consists of all complex numbers which are
fixed by both e and . As we just saw, being fixed by e is a vacuous condition,
so we need only determine which complex numbers are fixed by . But the
complex number a + bi is fixed by v if and only if a — bi = a + bi, i.e. if and
only if b = 0. This shows that ¢({e,v}) = R. (Technically speaking, it is not
truly R but the image of R inside C—but life is too short to keep making this
distinction explicitly.)

Remark 13. This example already suggests the general fact that the Galois
Correspondence is inclusion-reversing, i.e. large subgroups correspond to small
subextensions and vice-versa.

At last we are ready to state, or at least to summarize, the Fundamen-
tal Theorem of Galois Theory: under certain mild technical hypotheses
which we shall not state here, the Galois Correspondence is bijective.

This result means that to find all subextensions of a field extension, it often
suffices to find all subgroups of its Galois group. At at least for splitting fields,
the latter is a finite problem, and the search could in principle be carried out by
machines. (In practice this brute force approach tends to be impractical, which
is one of the reasons why mathematicians developed a much more sophisticated
theory of finite groups than this course has hinted at.)

No doubt all of this seems quite far removed from the problem of solv-
ing polynomial equations. But along with other mathematicians of the early
nineteenth century, Galois also realized that solving a polynomial equation “by
radicals” (i.e. in roughly the same sense in which the quadratic formula solves
quadratic equations) is equivalent to finding a “tower” of field extensions

F—-F —-F—>F—---—F

in which Fj, is a splitting field for the equation, and each extension in the tower
has a particularly simple form. (Believe it or not, the condition is that each
individual extension should have an abelian Galois group.) In this way, the
problem of solving polynomial equations by radicals was reduced to searching
for certain towers of subgroups of the Galois group of the splitting field—a finite
problem.

The details of the resulting “Theory of Equations” (a.k.a. “Galois Theory”)
are beyond the scope of Math 361. However, having completed Math 361, you
are well-prepared to begin the study of Galois Theory on your own if you so
desire.

Our textbook does contain a presentation of the elements of this theory, but
I cannot recommend it. The author, who in every other chapter of his book
displays good pedagogical skill, makes a number of unfortunate choices in his
presentation of Galois Theory which in my opinion mar the exposition, conceal-
ing the essential simplicity and beauty of the theory and making it unnecessarily
difficult to learn.



For a more skillfully presented introduction, I recommend one of two op-
tions. If you would prefer a leisurely yet thorough presentation of the theory,
with many examples and with some discussion of the astonishing history of the
subject, consider reading David A. Cox, Galois Theory. Or, if you are looking
for something much more concise, with only the bare essentials of the theory
presented in as few pages as possible, consider Chapter 4 of Nathan Jacobson’s
Basic Algebra I (surely one of the most misleading titles in the whole history
of mathematics textbooks).

Galois Theory is the time-honored “next step” after studying the basics
of Abstract Algebra, and preparing students to study it was one of the orig-
inal design goals of the Math 360-361 sequence. However, the emergence of
fast computers, and most especially the emergence of long-distance computer
networks roughly in the period 1960-1995, with all of the communication and
information-security problems that this generated, have made Abstract Algebra
relevant to non-mathematicians in new ways. If your tastes run in the direction
of computer science or communications engineering, you may wish to forego the
study of Galois Theory in favor of Coding Theory, or of Cryptography, or even
of the simple and beautiful theory of finite fields. Good introductory books
in these three areas are, respectively, Norman L. Biggs, Codes: An Introduc-
tion to Information Communication and Cryptography; Jeffrey Hoffstein, Jill
Pipher, and Joseph Silverman, An Introduction to Mathematical Cryptography;
and Rudolf Lidl and Harald Niederreiter, Introduction to Finite Fields and their
Applications.

This concludes Math 361. Each of you has my sincere wish for success in
your endeavors, and for lasting joy in the study of beautiful mathematics.



