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1. The correspondence between sets of polynomials and subsets of
affine space

Let k be an algebraically closed field. Affine algebraic geometry (over k) begins
with the study of a certain correspondence between subsets of n-dimensional affine
space kn and subsets of the polynomial ring k[x1, . . . , xn], which we now define:

Definition 1.1. Let S be any subset of the n-dimensional affine space kn. We
associate with S the set of polynomials

I (S) = {f ∈ k[x1, . . . , xn] | f(a) = 0 ∀a ∈ S}.
Similarly, if F is any subset of the polynomial ring k[x1, . . . , xn] we associate with
F the set of points

V (F ) = {a ∈ kn | f(a) = 0 ∀f ∈ F}.
In other words, we have a map I from the power set of kn to the power set of

k[x1, . . . , xn], and a map V from the power set of k[x1, . . . , xn] to the power set of
kn:

{Subsets of kn}
I // {Subsets of k[x1, . . . , xn]}
V
oo

The theory would be most pleasing if I and V were inverses of each other; that is,
if I ◦ V and V ◦ I were both identity maps. However, neither composition is the
identity map, as the following examples show:

Example 1.2. Take n = 1 and F = {x2}. Then V (F ) = {0} so that I (V (F )) is
the set of all polynomials vanishing at the origin. This coincides with the ideal 〈x〉
generated by x, which obviously contains many polynomials other than x2. Thus

I
(
V
(
{x2}

))
= I ({0}) = 〈x〉 6= {x2}.

Example 1.3. Take n = 1 and S = k − {0}. Since k is infinite, any polynomial
vanishing on S has infinitely many roots, so it is the zero polynomial. Thus I (S) =
{0} and we have

V (I (k− {0})) = V ({0}) = k 6= (k− {0}).
Notice that in the first example, I (V (F )) was larger than F itself, and in the

second example V (I (S)) was larger than S itself. In fact we have the following:

Theorem 1.4. The pair of maps {I,V} has the following three properties:

(1) F ⊆ I (V (F )) for any F ⊆ k[x1, . . . , xn],
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(2) S ⊆ V (I (S)) for any S ⊆ kn, and
(3) the maps I and V are both inclusion-reversing.

(The third condition means that F1 ⊆ F2 implies V (F1) ⊇ V (F2) and S1 ⊆ S2

implies I (S1) ⊇ I (S2).)

Proof. For (1), choose f ∈ F . It follows from the definition of V that f annihilates
every point of V (F ). Thus f ∈ I (V (F )).

For (2), choose a ∈ S. It follows from the definition of I that a is annihilated by
every f ∈ I (S), so in fact a ∈ V (I (S)).

To see that I is inclusion-reversing, suppose S1 ⊆ S2 and choose f ∈ I (S2). Then
f annihilates every point of S2. In particular, it annihilates every point of S1, so
in fact f ∈ I (S1).

Finally, to see that V is inclusion-reversing, suppose F1 ⊆ F2 and choose a ∈
V (F2). Then a is annihilated by every polynomial in F2. In particular, it is
annihilated by every polynomial in F1, so it is in V (F1). �

The situation described by the theorem arises so frequently in mathematics that
it is the subject of a definition. In the next section we will see that the pair {I,V}
is an example of an abstract Galois correspondence.

2. Poset isomorphisms and abstract Galois correspondences

Definition 2.1. Let A be a set. A partial order on A is a relation on A which is
reflexive, antisymmetric, and transitive. A partially ordered set (or poset for short)
is a pair (A,≤) where A is a set and ≤ is a partial order on A.

Example 2.2. If S is any set, then the power set P(S) is a poset with respect to
set inclusion. In particular, the power sets of kn and k[x1, . . . , xn] are both posets
with respect to set inclusion.

Definition 2.3. Let (A,≤) and (B,≤) be posets. An isomorphism between A and
B is a pair of maps

A
f //

B
g
oo

such that

(1) f(g(b)) = b for every b ∈ B,
(2) g(f(a)) = a for every a ∈ A, and
(3) f and g are both order-preserving.

(The last condition means that a1 ≤ a2 implies f(a1) ≤ f(a2) and b1 ≤ b2 implies
g(b1) ≤ g(b2).)

This definition is analogous to that of isomorphism of groups or rings: the first
two conditions ensure that f and g are bijective and inverses of one another, while
the last condition ensures that they “preserve the structure,” in this case the order
relation. So we can think of B as a “copy” of A in which the names of elements
might be different but the (order) structure is the same.

The situation here is similar to that in Theorem 1.4, but differs from it in two
important respects: first, the maps in the theorem do not quite satisfy conditions
(1) and (2), and second, the maps in the theorem do not preserve order but reverse
it. We consider the latter difference first:
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Definition 2.4. Let (A,≤) and (B,≤) be posets. An anti-isomorphism between
A and B is a pair of maps

A
f //

B
g
oo

such that

(1) f(g(b)) = b for every b ∈ B,
(2) g(f(a)) = a for every a ∈ A, and
(3) f and g are both order-reversing.

(The last condition means that a1 ≤ a2 implies f(a1) ≥ f(a2) and b1 ≤ b2 implies
g(b1) ≥ g(b2).)

Here we can think of B as a copy of A in which the order has been turned
upside-down. For example, the posets

a

b c d

e

f

φ

ε

β γ δ

α

are anti-isomorphic. Finally, we define:

Definition 2.5. Let (A,≤) and (B,≤) be posets. An abstract Galois correspon-
dence between A and B is a pair of maps

A
f //

B
g
oo

such that

(1) f(g(b)) ≥ b for every b ∈ B,
(2) g(f(a)) ≥ a for every a ∈ A, and
(3) f and g are both order-reversing.

Example 2.6. The pair {I,V} is an abstract Galois correspondence between the
power set of kn and the power set of k[x1, . . . , xn].

An abstract Galois correspondence is not quite an anti-isomorphism since in
general f and g are neither injective nor surjective. Consequently, although the
order structure is respected, some “collapsing” and “expanding” of the set-theoretic
structure may be taking place. However, this happens in a fairly controlled way, as
the next few results show:

Lemma 2.7. Suppose {f, g} is an abstract Galois correspondence between A and
B. Then

(1) g ◦ f ◦ g = g, and
(2) f ◦ g ◦ f = f .

Proof. For (1), choose b ∈ B. From the definition of an abstract Galois correspon-
dence we have

f(g(b)) ≥ b.
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Applying g to both sides and bearing in mind that g is order-reversing we obtain

g(f(g(b))) ≤ g(b).

On the other hand, taking a = g(b) in the definition of an abstract Galois corre-
spondence we obtain

g(f(g(b))) ≥ g(b).

Since ≤ is an antisymmetric relation, we conclude that

g(f(g(b))) = g(b).

The proof of (2) is similar. �

This leads immediately to the following:

Theorem 2.8. Suppose that

A
f //

B
g
oo

is an abstract Galois correspondence, and let Ã and B̃ denote the images of g and
f respectively. Then the restricted maps

Ã
f //

B̃
g
oo

form an anti-isomorphism between the sub-posets Ã and B̃.

Proof. We need to show that

(1) f(g(b)) = b for every b ∈ B̃, and

(2) g(f(a)) = a for every a ∈ Ã.

For (1), suppose b ∈ B̃. Then we can find some a ∈ A such that b = f(a). Then
the previous lemma gives

f(g(b)) = f(g(f(a))) = f(a) = b.

The proof of (2) is similar. �

For reasons that will become apparent later (Theorem 3.4), we refer to Ã and B̃
as the sets of closed elements of A and B respectively. Characterizing the closed
elements is an essential first step in understanding any particular Galois correspon-
dence. Before studying the important closure operation in the next section, we give
two additional examples of Galois correspondences:

Example 2.9 (The Galois pairing of V and V ∗). Let V be a vector space over k,
and let V ∗ be the dual space of V , i.e., the set of all linear transformations from
V to k. (Note that V ∗ is again a vector space over k with respect to pointwise
addition and scalar multiplication.) Given any set S ⊆ V , define the annihilator of
S in V ∗ by

AnnV ∗(S) = {λ ∈ V ∗ |λ(s) = 0 ∀s ∈ S},
and similarly, for T ⊆ V ∗ let

AnnV (T ) = {v ∈ V | τ(v) = 0 ∀τ ∈ T}.
Then the pair {AnnV ∗ ,AnnV } is an abstract Galois correspondence between the
power set of V and the power set of V ∗.



ALGEBRAIC GEOMETRY AND ABSTRACT GALOIS CORRESPONDENCES 5

Example 2.10 (The classical Galois correspondence). Let E/F be an extension
field, and let Gal(E/F ) be its Galois group, i.e., the group of automorphisms of E
fixing F pointwise. For any subset K ⊆ E, define

γ(K) = {g ∈ Gal(E/F ) | g(k) = k ∀k ∈ K},
and for any subset H ⊆ Gal(E/F ) define

φ(H) = {x ∈ E |h(x) = x ∀h ∈ H}.
Then the pair {γ, φ} is an abstract Galois correspondence between the power set
of E and the power set of Gal(E/F ).

3. The closure operation

Definition 3.1. Suppose that

A
f //

B
g
oo

is an abstract Galois correspondence. For any a ∈ A, we define the closure of a to
be the element

a = g(f(a)).

Similarly, for b ∈ B we define
b = f(g(b)).

We shall now give a series of definitions and results relating to the closure op-
erations. For concreteness of notation, we shall discuss the closure operation on
A; however, note that since the definition of an abstract Galois correspondence is
symmetric in A and B, all of our definitions and results carry over word for word
to the closure operation on B.

Definition 3.2. An element a ∈ A is closed if a = a.

Theorem 3.3. The closure a is a closed element of A.

Proof. We need to show that a = a. Using the definition of a together with
Lemma 2.7 gives

a = g(f(g(f(a)))) = g(f(a)) = a.

�

Theorem 3.4. An element a ∈ A is closed if and only if it belongs to Ã.

Proof. Suppose a is closed. Then a = a = g(f(a)) certainly belongs to the image of

g. On the other hand, if a ∈ Ã then choose b ∈ B with a = g(b). Using Lemma 2.7
we obtain

a = g(f(a)) = g(f(g(b))) = g(b) = a.

�

Theorem 3.5. Closure is an order-preserving operation, i.e. a1 ≤ a2 implies
a1 ≤ a2.

Proof. Since f and g are order-reversing, we have

a1 ≤ a2 =⇒ f(a1) ≥ f(a2) =⇒ g(f(a1)) ≤ g(f(a2)) =⇒ a1 ≤ a2.
�
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Theorem 3.6. The closure a is the smallest closed element greater than or equal
to a.

Proof. That a ≥ a is part of the definition of an abstract Galois correspondence.
It remains only to show that, for any closed element a′ with a ≤ a′ we also have
a ≤ a′. To see this, choose any such a′. Then

a ≤ a′ =⇒ a ≤ a′ =⇒ a ≤ a′.
�

In the next section we shall determine the closed elements and closure operations
for the Galois correspondence arising in affine algebraic geometry (Example 2.6).

Exercise 3.7. Determine the closed elements and closure operations for the Galois
pairing between V and V ∗ (Example 2.9), at least in the case where V is finite-
dimensional. As a challenge, determine the closed elements and closure operations
for the classical Galois correspondence (Example 2.10). (In other words, discover
and prove all of the fundamental results of Galois theory.)

4. Closure operations in algebraic geometry: the Hilbert
Nullstellensatz

We now return to the situation in Section 1. Recall that we have the Galois
correspondence

{Subsets of kn}
I // {Subsets of k[x1, . . . , xn]}
V
oo .

By Theorem 3.4, a closed subset of kn is a set in the image of V, which by definition
is just an affine algebraic variety. So from Theorem 3.6 we immediately obtain

Theorem 4.1. For any subset S ⊆ kn, the closure S is the smallest affine algebraic
variety containing S. (We sometimes refer to S as the Zariski closure of S.)

As a reminder, we note that the words “closed” and “closure” are used here in
the sense of Section 3, not in the sense of topology. In fact, although it is true that
the closed subsets of kn form a topology on kn (the so-called Zariski topology), we
shall see later (Exercise 4.7) that the closed subsets of k[x1, . . . , xn] do not form a
topology on k[x1, . . . , xn].

Determining the closed subsets of k[x1, . . . , xn] is more difficult. Here are two
easy preliminary results:

Theorem 4.2. Suppose F is a closed subset of k[x1, . . . , xn]. Then F is an ideal.

Proof. Since F is closed, it lies in the image of I, so we can write F = I (S) for
some S ⊂ kn. Clearly the zero polynomial lies in F . If f1, f2 ∈ F then, for any
s ∈ S we have f1(s) = f2(s) = 0. Consequently (f1 + f2)(s) = f1(s) + f2(s) = 0.
Since s was arbitrary in S this implies that (f1 + f2) ∈ F . Similarly, if f ∈ F and
h is any polynomial, then (hf)(s) = h(s)f(s) = 0 so that hf ∈ F . �

Theorem 4.3. Suppose F is a closed subset of k[x1, . . . , xn]. If f is a polynomial
such that f i ∈ F for some non-negative power i, then in fact f ∈ F .

Proof. Write F = I (S), and suppose that f i ∈ F . Then for any s ∈ S we have
f i(s) = (f(s))i = 0. This implies that f(s) = 0, and since s was arbitrary in S this
means that f ∈ F . �
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Ideals with the property described in the previous theorem are called radical
ideals, since they contain all the ith roots of all of their elements. So we can say that
every closed subset of k[x1, . . . , xn] is a radical ideal. We will soon see (Theorem 4.6)
that the closed subsets of k[x1, . . . , xn] are precisely the radical ideals.

Definition 4.4. Let F be any subset of k[x1, . . . , xn]. The ideal generated by F ,
denoted 〈F 〉, is the intersection of all ideals containing F . This is an ideal, and it
is the smallest ideal containing F .

Definition 4.5. Let F be any subset of k[x1, . . . , xn]. The radical of F is the set
√
F = {f ∈ k[x1, . . . , xn] | f i ∈ F for some i ≥ 0}.

In other words, the radical of a set is the new set obtained by adding all the ith
roots of all elements of the set. Using the binomial theorem, one can prove that
the radical of an ideal is again an ideal, and that in fact it is a radical ideal.

We are now ready to describe the closure operation on k[x1, . . . , xn].

Theorem 4.6 (the Hilbert Nullstellensatz). Let F be any subset of k[x1, . . . , xn].
Then the closure of F is given by

F =
√
〈F 〉.

Proof. [?, Theorem 4.2.6]. �

It follows immediately that every radical ideal is closed. Applying Theorem 2.8,
we see that the system of maps

{Algebraic varieties in kn}
I // {Radical ideals in k[x1, . . . , xn]}
V
oo .

is an anti-isomorphism of posets. In particular, there is a one-to-one correspondence
between algebraic varieties in kn and radical ideals in k[x1, . . . , xn].

Exercise 4.7. Show that the radical ideals do not form a topology on k[x1, . . . , xn].
(Hint: consider the union of two radical ideals.)

5. Corresponding operations and the algebra-geometry dictionary

Definition 5.1. Suppose that

A
f //

B
g
oo

is an abstract Galois correspondence, that ∗ is a binary operation on A, and that
? is a binary operation on B. We say that ∗ and ? are corresponding operations if
f and g are homomorphisms of the resulting binary structures; that is, if

f(a1 ∗ a2) = f(a1) ? f(a2) ∀a1, a2 ∈ A
and

g(b1 ? b2) = g(b1) ∗ g(b2) ∀b1, b2 ∈ B.

Exercise 5.2. Consider the Galois correspondence

{Subsets of kn}
I // {Subsets of k[x1, . . . , xn]}
V
oo .

Prove that the operation S∗T = S∩T on subsets of kn corresponds to the operation
F ? G =

√
〈F ∪G〉 on subsets of k[x1, . . . , xn].
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The next result shows that it is not always possible to find an operation on B
corresponding to a given operation on A:

Theorem 5.3. Suppose that ∗ and ? are corresponding operations. Then ∗ and ?
both take closed elements to closed elements (i.e. if a1 and a2 are closed then so is
a1 ∗ a2 and similarly for ?).

Proof. Suppose that a1 and a2 are closed. Then by Theorem 3.4 we can find
b1, b2 ∈ B with a1 = g(b1) and a2 = g(b2). But then

a1 ∗ a2 = g(b1) ∗ g(b2) = g(b1 ? b2)

so that a1 ∗ a2 is also closed. The proof for ? is similar. �

It follows that if ∗ is an operation on A which does not take closed elements
to closed elements then it is impossible to find any corresponding operation on B.
However, this difficulty is easy to work around by defining a new operation ∗̃ by
the formula

a1∗̃a2 = a1 ∗ a2.
It is common to abuse language and say that ∗ and ? are corresponding operations
when in fact we mean that ∗̃ and ?̃ are corresponding operations.

Example 5.4. Consider the Galois correspondence

{Subsets of kn}
I // {Subsets of k[x1, . . . , xn]}
V
oo .

The operation S ∗T = S−T on subsets of kn does not take closed sets to closed sets
since the difference of two varieties need not be a variety. Consequently there is no
operation on subsets of k[x1, . . . , xn] corresponding to ∗. However, we can define
a new operation ∗̃ by the formula S∗̃T = S − T , the smallest variety containing
S − T . This new operation corresponds to the operation F ? G =

√
〈F 〉 :

√
〈G〉

(see [?, Section 4.4] and Exercise 5.5 below). We often speak carelessly and say
that the colon operation corresponds to set difference.

We can make similar definitions for m-ary operations for any m (e.g. unary and
even nullary operations). Finding pairs of corresponding operations is an essential
second step in understanding any particular Galois correspondence.

Exercise 5.5. Consider the Galois correspondence

{Subsets of kn}
I // {Subsets of k[x1, . . . , xn]}
V
oo .

Find operations on subsets of k[x1, . . . , xn] corresponding to the operations of pro-
jection, union, intersection, and set difference on subsets of kn. (In other words,
work out the rest of Chapter 4 of [?].)
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