
MATH 141 Spring 2016 Final exam practice problems – solutions

1. (a) When we plug in x = 0, we get 0/0, so we use L’Hospital’s Rule:

lim
x→0

x2

1− cosx
= lim
x→0

d
dx (x2)

d
dx (1− cosx)

= lim
x→0

2x

sinx
.

Plugging in x = 0 gives us 0/0 again, so we apply L’Hospital’s Rule a second time to get

lim
x→0

2

cosx
.

Now plugging in x = 0 gives 2/1 = 2.

(b) Plugging in x =∞ gives ∞ · tan(3/∞) =∞ · tan(0) =∞ · 0. This is an indeterminate form,
so we cannot write the answer directly. We also cannot use L’Hospital’s Rule yet – we need
0/0 or∞/∞ for that. So we start by rewriting the function as a quotient, using the fact that
x = 1

1/x :

x tan(3/x) =
tan(3/x)

1/x
.

So what we have is

lim
x→∞

tan(3/x)

1/x
,

and when we plug in x =∞, we get 0/0. Now we can apply L’Hospital’s Rule and take the
derivative of the top and bottom to get

lim
x→∞

sec2(3/x) · (−3/x2)

−1/x2
.

We could plug in x = ∞ at this stage, but our limit is kind of messy. Let’s clean it up by
multiplying top and bottom by x2:

lim
x→∞

sec2(3/x) · (−3)

−1
= lim
x→∞

3 sec2(3/x) = lim
x→∞

3

cos2(3/x)
.

Now if we plug in x =∞, we get 3/ cos2(0) = 3/(12) = 3.

(c) Plugging in x = ∞ gives 1∞, which is an indeterminate form. As before, our goal is to
somehow write the limit as a quotient, so that we can use L’Hospital’s Rule. Let’s set
y =

(
1 + 5

x

)x
, so that the problem is asking us to find limx→∞ y. What we do is to work

with ln y for a bit:

ln y = ln

((
1 +

5

x

)x)
= x ln

(
1 +

5

x

)
,

where the last equality follows from the property of logarithms that ln(ab) = b ln a. Now,

lim
x→∞

x ln

(
1 +

5

x

)
=∞ · ln 1 =∞ · 0,

and now we have a problem similar to the last one. We bring the x to the bottom as 1/x and
get

lim
x→∞

ln
(
1 + 5

x

)
1/x

,



which gives us 0/0. Taking the derivative of top and bottom yields

lim
x→∞

1
1+ 5

x

· (−5/x2)

−1/x2
= lim
x→∞

5

1 + 5
x

= 5.

But be careful! 5 is not our final answer; what we found was that

lim
x→∞

ln y = 5.

We are trying to find
lim
x→∞

y.

But now that is simple:
lim
x→∞

y = lim
x→∞

eln y = e5,

since ln y approaches 5.

(d) As x→∞, we get ∞/∞, and so we apply L’Hospital’s Rule. That gets us

lim
x→∞

3e3x − 1

2e2x − 1
.

This again gets us ∞/∞, so we apply L’Hospital’s Rule again:

lim
x→∞

9e3x

4e2x
.

We still get ∞/∞. However, if we keep applying L’Hospital’s Rule, that is going to keep
happening since neither of the exponentials will go away. Instead, we simplify algebraically:

lim
x→∞

9e3x

4e2x
= lim
x→∞

9e2xex

4e2x
= lim
x→∞

9ex

4
.

So now as x→∞, we get an answer of ∞.

(e) As x→∞, we get ∞−∞, which is indeterminate. Our goal is to change this into a product
or quotient. Using the property of logarithms that ln f − ln g = ln(f/g), we can rewrite our
limit as

lim
x→∞

ln

(
x+ 1

x

)
= lim
x→∞

ln

(
1 +

1

x

)
.

As x→∞, the inside approaches 1, and so the answer is ln 1 = 0.

(f) As x → 0+, lnx → −∞, and so we get the indeterminate form 0 · (−∞). In order to use
L’Hospital’s Rule, we must first convert the function to an indeterminate quotient. We may
rewrite x2 lnx as (lnx)/x−2, which now goes to −∞/∞ as x → 0+. Applying L’Hospital’s
Rule now gives

lim
x→0+

x−1

−2x−3
= lim
x→0+

x2

−2
= 0.

2. (a) We start by using the trig identity sin2 x+ cos2 x = 1:∫
sin5 x dx =

∫
sinx(sin2 x)(sin2 x) dx =

∫
sinx(1− cos2 x)2 dx.



Now, we use the substitution u = cosx, so that du = − sinxdx. Then our integral becomes

−
∫

(1− u2)2 du.

Finally, we multiply out the inside, integrate, and then put back in terms of x:

−
∫

(1− u2)2 du = −
∫

(1− 2u2 + u4) du = −u+ 2u3/3− u5/5 = −cos5 x

5
+

2 cos3 x

3
− cosx

(b) The fact that we have a quadratic under a square root makes a trig substitution appealing.
But first we need to get rid of that middle term by completing the square. Let’s negate the
inside of the square root to make it a bit easier to work with: −(x2 + 6x − 7). Completing
the square means taking a quadratic of the form

x2 + bx+ c

and writing it as (
x+

b

2

)2

+

(
c−

(
b

2

)2
)
.

In our case, b = 6 and c = −7, and we get

x2 + 6x− 7 = (x+ 3)2 − 16.

Therefore,
−(x2 + 6x− 7) = 16− (x+ 3)2,

so we can rewrite our integral as ∫
1√

16− (x+ 3)2
dx.

Next we make the substitution u = x+ 3 (so du = dx), and we get∫
1√

16− u2
du.

Now we are ready to do the trig substitution. When you have
√
a2 − u2, the substitution to

make is u = a sin θ, which gives du = a cos θdθ, and we get∫
4 cos θ√

16− 16 sin2 θ
dθ =

∫
4 cos θ√
16 cos2 θ

dθ

=

∫
4 cos θ

4 cos θ
dθ

=

∫
dθ

= θ.

Now we undo the substitutions. Since u = 4 sin θ, it follows that θ = arcsin(u/4). Then,
since u = x+ 3, we get a final answer of arcsin(x+3

4 ) + C.



(c) We use partial fractions. We want to solve the equation

5x2 + 3x+ 7

(x+ 1)(x2 + 2)
=

A

x+ 1
+
Bx+ C

x2 + 2
.

Multiplying through both sides by the denominator on the left, we get

5x2 + 3x+ 7 = A(x2 + 2) + (Bx+ C)(x+ 1).

Plugging in x = −1 yields
9 = 3A+ 0,

and so A = 3. Plugging in x = 0 yields

7 = 2A+ C,

and since A = 3, we get that C = 1. Finally, we can plug in any other x-value we want; let’s
try x = 1:

15 = 3A+ 2B + 2C = 3(3) + 2B + 2(1),

and rearranging we get that B = 2. So we end up with∫
3

x+ 1
+

2x+ 1

x2 + 2
dx.

We split up the second fraction into 2 pieces:∫
3

x+ 1
+

2x

x2 + 2
+

1

x2 + 2
dx.

The first piece becomes 3 ln |x+ 1| (using the substitution u = x+ 1). The second piece be-
comes ln |x2+2| (using the substitution u = x2+2). The third piece becomes (1/

√
2) arctan(x/

√
2),

using the integration formula that∫
1

x2 + a2
dx = (1/a) arctan(x/a).

Putting it all together yields

3 ln |x+ 1|+ ln |x2 + 2|+ (1/
√

2) arctan(x/
√

2) + C.

(d) We use Integration by Parts:

u = x dv = e3x dx

du = dx v = (1/3)e3x

(To go from dv to v, we do a substitution y = 3x, which gives us the extra 1/3.) Then we
get uv −

∫
v du, which is

(1/3)xe3x −
∫

(1/3)e3x dx.

Completing the last integral yields

xe3x

3
− e3x

9
+ C.



(e) We start with the trig substitution t = 4 sec θ, which gives us dt = 4 sec θ tan θdθ, and so our
integral becomes ∫

4 sec θ tan θ

16 sec2 θ
√

16 sec2 θ − 16
dθ.

Underneath the square root, we have 16(sec2 θ − 1), which is 16 tan2 θ, and we simplify√
16 tan2 θ to 4 tan θ. So we now have∫

4 sec θ tan θ

64 sec2 θ tan θ
dθ =

∫
1

16 sec θ
dθ =

∫
cos θ

16
dθ.

Integrating, we get (sin θ)/16+C. Now, θ = arcsec(t/4), and so we have (sin(arcsec(t/4)))/16+
C. To simplify sin(arcsec(t/4)), we draw a right triangle with angle θ satisfying sec θ = t/4.
Since sec = 1/ cos, that means we want the hypotenuse to have a length of t and the ad-
jacent leg to have a length of 4. Then the opposite leg has a length of

√
t2 − 16, and so

sin θ =
√
t2 − 16t. So our final answer is

√
t2 − 16

16t
+ C

(f) This is a partial fractions problem; we start by trying to write

x2 + 1

(x− 3)(x− 2)2
=

A

x− 3
+

B

x− 2
+

C

(x− 2)2
.

Multiplying through by (x− 3)(x− 2)2 gives us

x2 + 1 = A(x− 2)2 +B(x− 3)(x− 2) + C(x− 3).

Now, plugging in x = 3 gives us that 10 = A + 0 + 0, so A = 10. Plugging in x = 2 gives
us 5 = −C. Now we can plug in any other x-value; let’s use x = 4. Then we get that
17 = 4A + 2B + C, and plugging in the values we already have for A and C gives us that
17 = 40 + 2B − 5; therefore B = −9. So our integral becomes∫

10

x− 3
− 9

x− 2
− 5

(x− 2)2
dx.

The first two pieces yield natural logs, and for the last one, we do the substitution u = x− 2,
giving us

∫
5/u2 du, which is the same as

∫
5u−2 du, and so integrates to −5/u. Putting

everything together, we get

10 ln |x− 3| − 9 ln |x− 2|+ 5

x− 2
+ C

3. (a) First, the integral is defined as

lim
b→∞

(∫ b

1

x2

x3 + 1
dx

)
.

Since the top is the derivative of the bottom (up to a constant factor), we use the substitution
u = x3 + 1. That gives us du = 3x2dx, so that our integral is∫

1

3u
du.



Integrating and putting back in terms of x yields ln(u)/3 = ln(x3 + 1)/3. Since we wanted
the definite integral from 1 to b, we substitute and subtract to get ln(b3 + 1)/3− ln(13 + 1)/3.
Finally, taking the limit as b → ∞ causes the inside of the natural log to go to ∞, which
causes the natural log itself to go to ∞. Thus the integral diverges.

(b) We need to find

lim
b→∞

(∫ b

2

1

x2 + 4
dx

)
.

The antiderivative of 1/(x2 + 4) is
1

2
arctan(x/2), and so we end up with

lim
b→∞

(
1

2
arctan(b/2)− 1

2
arctan(1)

)
.

We have that arctan(1) = π/4 (because tan(π/4) = 1), and limx→∞ arctanx = π/2 (because
limx→π/2− tanx =∞), and so we get

1

2

π

2
− 1

2

π

4
=
π

8
.

(In particular, the integral converges.)

(c) Since 1/x1/3 is undefined at x = 0, we split the given integral into two improper integrals:∫ 8

−1

1

x1/3
dx = lim

b→0−

(∫ b

−1

1

x1/3
dx

)
+ lim
a→0+

(∫ 8

a

1

x1/3
dx

)
.

Since 1/x1/3 = x−1/3, it has antiderivative (3/2)x2/3, and so we end up with

lim
b→0−

(
3

2
b2/3 − 3

2
(−1)2/3) + lim

a→0+
(
3

2
82/3 − 3

2
a2/3).

Since x2/3 is continuous, and 02/3 = 0, we get a final answer of

3

2
82/3 − 3

2
(−1)2/3 =

3

2
4− 3

2
=

9

2
.

(d) The function tan θ is undefined at θ = π/2, and so we split the given integral into two
improper integrals:∫ π

0

tan θ dθ = lim
b→π/2−

(∫ b

0

tan θ dθ

)
+ lim
a→π/2+

(∫ π

a

tan θ dθ

)
.

The way to integrate tan θ is to write it as sin θ/ cos θ and then make the substitution u =
cos θ. This gives us du = − sin θdθ, and so:∫

sin θ

cos θ
dθ =

∫
−1

u
du = − ln |u| = − ln | cos θ|.

Then the first integral becomes

lim
b→π/2−

(− ln | cos b|+ ln | cos 0|).

As b → π/2−, cos b → 0, and − ln | cos b| → ∞. So this improper integral diverges, and it
follows that the entire integral diverges.



4. We need to integrate
√

(dx/dt)2 + (dy/dt)2. We have that dx/dt = 6e2t and dy/dt = 6e3t.
Squaring and adding gives us ∫ 1

0

√
36e4t + 36e6t dt.

Both terms under the square root are divisible by 36. In fact, they are also both divisible by e4t,
because e6t = e4t · e2t. Thus we can factor the inside of the square root to get∫ 1

0

√
36e4t + 36e6t dt =

∫ 1

0

√
36e4t(1 + e2t) dt

=

∫ 1

0

√
36e4t

√
1 + e2t dt

=

∫ 1

0

6e2t
√

1 + e2t dt.

Now, since the inside of the square root has its derivative sitting on the outside, we make the
substitution u = 1 + e2t, which gives us du = 2e2tdt. This gives us∫

3
√
u du.

This integrates to 3u3/2 ∗ 2/3 = 2u3/2 = 2u
√
u. So we get

2(1 + e2t)
√

1 + e2t.

Substituting t = 1 and t = 0 and subtracting gives us

2(1 + e2)
√

1 + e2 − 2(2)
√

2.

5. For these parametric equations, we have dx/dt = cos t− sin t and dy/dt = cos t+ sin t. Therefore,

(dx/dt)2 + (dy/dt)2 = (cos t− sin t)2 + (cos t+ sin t)2

= (cos2 t− 2 cos t sin t+ sin2 t) + (cos2 t+ 2 cos t sin t+ sin2 t)

= (1− 2 cos t sin t) + (1 + 2 cos t sin t)

= 2.

So, to find the length, we do the integral∫ π

0

√
2 dt =

√
2t |π0=

√
2π.

6. To find the area, we need to find ∫ β

α

1

2
r2 dθ.

We start by finding the bounds. In order to get only a single petal, we want to find the θ-values
that give us r = 0; such points will be at the origin, and if we take two such θ-values in a row,
that will give us a single petal. So, we set r = 0 and solve for θ. If we want 3 sin(2θ) = 0, that
means that sin(2θ) = 0. Now, sinx = 0 whenever x is a multiple of π, so we want 2θ to be a



multiple of π; that is, 2θ = 0, π, 2π, .... That means that we want θ = 0, π/2, π, .... Any choice of
two consecutive values should give us the same answer, so we will use 0 and π/2. So now we want
to compute ∫ π/2

0

1

2
(3 sin 2θ)2 dθ =

∫ π/2

0

9

2
sin2(2θ) dθ.

To solve this, we use the half-angle formula: sin2 x = (1− cos(2x))/2. So we get∫ π/2

0

9

4
(1− cos(4θ)) dθ =

9

4
(θ − 1

4
sin(4θ)) |π/20 =

9π

8
− 9

16
(sin(2π)− sin(0)) =

9π

8
.

7. Starting at θ = 0, we complete the curve when we reach θ = 2π. So the area will be∫ 2π

0

1

2
(2 + cos θ)2 dθ.

Expanding out the square and using the half-angle formula, we get:

1

2

∫ 2π

0

(4 + 4 cos θ + cos2 θ) dθ =
1

2

∫ 2π

0

(4 + 4 cos θ + (
1

2
+

cos 2θ

2
)) dθ

=
1

2

∫ 2π

0

(
9

2
+ 4 cos θ +

cos 2θ

2
) dθ

=

∫ 2π

0

(
9

4
+ 2 cos θ +

cos 2θ

4
) dθ

=
9θ

4
+ 2 sin θ +

sin 2θ

8
|2π0

=
9π

2
.

8. We can split the series up as
∞∑
n=1

2n+2

52n
+

∞∑
n=1

3n

52n
.

Then note that 52n = (52)n = 25n, and so we have

∞∑
n=1

2n+2

25n
+

∞∑
n=1

3n

25n
.

Since 2n+2 = 2n · 22, we can simplify the first one further to get

∞∑
n=1

4 · 2n

25n
+

∞∑
n=1

3n

25n
.

Both of those pieces are geometric series, and if you have a geometric series with first term a and
common ratio r, then as long as |r| < 1, the series adds up to a

1−r . To find the first term of each
series, you just plug in n = 1. The first series has first term 8/25 and common ratio 2/25, so it
adds up to

8/25

1− (2/25)
=

8/25

23/5
= 8/23.



The second series has first term 3/25 and common ratio 3/25, so it adds up to

3/25

1− (3/25)
=

3/25

22/25
= 3/22.

So the overall sum is (8/23) + (3/22).

9. We can rewrite the sum as

∞∑
n=0

(
−π
4

)n
. Thus, this is a geometric series with r = −π/4 and first

term 1. Since |r| < 1, the sum of this series is

1

1− (−π/4)
=

1

1 + π/4
=

1

(4 + π)/4
=

4

4 + π
.

10. Listing out the first few terms, we get

(1− 1/27) + (1/8− 1/64) + (1/27− 1/125) + (1/64− 1/216) + · · · .

If we stop there and calculate s4, we get

s4 = 1 + 1/8− 1/125− 1/216.

Adding the next term of (1/125− 1/343) gets us

s5 = 1 + 1/8− 1/216− 1/343.

In general, it looks like everything cancels except for two terms at the front and two in the back.
We get

sn = 1 + 1/8− 1/(n+ 1)3 − 1/(n+ 2)3.

Thus, the value of the series is

lim
n→∞

(1 + 1/8− 1/(n+ 1)3 − 1/(n+ 2)3) = 1 + 1/8 = 9/8.

11. Let us write out several terms:

(1− 1√
3

) + (
1√
2
− 1√

4
) + (

1√
3
− 1√

5
) + (

1√
4
− 1√

5
) + · · ·

We notice that many of the terms cancel. In general, if we write out the first n terms, we get:

sn = (1− 1√
3

)+(
1√
2
− 1√

4
)+· · ·+(

1√
n− 1

− 1√
n+ 1

)+(
1√
n
− 1√

n+ 2
) = 1+

1√
2
− 1√

n+ 1
− 1√

n+ 2
.

So this is a rare case when we have an expression for sn that doesnt include any · · · in the middle.
Whenever that happens, we can just consider limn→∞ sn, and we get that

lim
n→∞

(1 +
1√
2
− 1√

n+ 1
− 1√

n+ 2
) = 1 +

1√
2
.

So the series converges to 1 + (1/
√

2).



12. (a) We use the Root Test. We have that

n

√
(2n+ 1)n

n2n
=

2n+ 1

n2
,

and now we take the limit as n → ∞ to get 0 (after applying L’Hospital’s Rule). Since we
get a limit that is less than 1, the series converges by the Root Test.

(b) If we dropped the 1 on bottom, we would have 1/n
√
n2 = 1/n2, and so our series looks a lot

like a convergent p-series. Since

1

n
√
n2 + 1

<
1

n
√
n2

=
1

n2
,

we see that our series is smaller than a convergent series, and so it converges by the Direct
Comparison Test. (It is possible to do this with the Limit Comparison Test as well, but the
argument is more involved.)

(c) This is an alternating series, so we can apply the Alternating Series Test. We set bn =
1/
√
n+ 5 and then we need to check two things. First of all, what is limn→∞ bn? Since the

top stays the same while the bottom grows larger and larger, the limit is 0. Second of all, is
it true that bn+1 ≤ bn for all n? In other words, is 1/

√
n+ 6 ≤ 1/

√
n+ 5? The answer is

clearly yes, since
√
n+ 6 >

√
n+ 5. So our series passes both parts of the Alternating Series

Test, and it converges.

(d) Whenever you have one polynomial divided by another, you can get a pretty good idea of what
the series does by keeping only the highest order part on top and bottom. That would give
us
∑

3n2/10n2, which is the same as
∑

3/10. That suggests that our terms are approaching
3/10, and as a way of checking, we use the Test for Divergence:

lim
n→∞

3n2 + 4

10n2 + 1
= lim
n→∞

6n

20n
= lim
n→∞

6

20
=

6

20
6= 0.

Thus, the series diverges by the Test for Divergence.

(e) The presence of factorials alerts us that the Ratio Test should work well. We have

an+1

an
=

(n+ 1)!(n+ 1)!

(n+ 2)!
· (n+ 1)!

n!n!
,

and using the fact that (n+ 1)! = n! · (n+ 1), we get that this equals

n!(n+ 1)n!(n+ 1)(n+ 1)!

(n+ 2)!n!n!
=

(n+ 1)2(n+ 1)!

(n+ 2)!
=

(n+ 1)2(n+ 1)!

(n+ 1)!(n+ 2)
=

(n+ 1)2

n+ 2
.

The limit of this as n→∞ is∞ (by L’Hospital’s Rule), and since we get a limit greater than
1, the Ratio Test tells us that the series diverges.

(f) The terms are all positive and top and bottom are polynomials. We try keeping highest order
on top and bottom. So an = n

n3−2 and bn = n
n3 = 1

n2 . We note that
∑
bn converges (p-series,

p > 1). We have that an > bn, so we are “bigger than small”, which tells us nothing. So we
try the Limit Comparison Test:

lim
n→∞

an
bn

= lim
n→∞

n3

n3 − 2
= 1.



(To find that limit at the end, you can apply LHospitals rule or simply keep the coefficients of
the n3 on top and bottom.) Since we got a limit that was finite and nonzero, that means that∑
an and

∑
bn both have to do the same thing. Since we already know that

∑
bn converges,

it follows that
∑
an converges as well.

13. (a) To find the interval of convergence of a power series, you always start by applying the Ratio
Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣10n+1xn+1

(n+ 1)3
· n3

10nxn

∣∣∣∣
= lim
n→∞

∣∣∣∣10n · 10 · xn · x
(n+ 1)3

· n3

10nxn

∣∣∣∣
= lim
n→∞

∣∣∣∣ 10xn3

(n+ 1)3

∣∣∣∣
= |10x| lim

n→∞

∣∣∣∣ n3

(n+ 1)3

∣∣∣∣
= |10x|,

where the last step follows by applying L’Hospital’s Rule to the limit. We found that our
limit, L, is |10x|. To find the interval, we start by setting L = 1 and solving. This gives us
that |10x| = 1, which means either 10x = 1 or 10x = −1. So if x = 1/10 or x = −1/10,
we have a limit of 1. Furthermore, if x is strictly in between −1/10 and 1/10, then L < 1
and the series converges by the Ratio Test. To determine if the series converges at −1/10 or
1/10, we plug each one in and then test the series. When x = 1/10, then we get

∞∑
n=1

10n(1/10)n

n3
=

∞∑
n=1

1

n3
,

which converges since it is a p-series with p > 1. When x = −1/10, we get

∞∑
n=1

10n(−1/10)n

n3
=

∞∑
n=1

(−1)n

n3
,

which converges by the Alternating Series Test. So our power series converges whenever
−1/10 ≤ x ≤ 1/10, and thus the interval of convergence is [−1/10, 1/10].

(b) As in the previous problem, we start by applying the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(x− 3)n+1

2(n+ 1) + 1
· 2n+ 1

(−1)n(x− 3)n

∣∣∣∣
= lim
n→∞

∣∣∣∣ (−1)n · (−1) · (x− 3)n · (x− 3)

2n+ 3
· 2n+ 1

(−1)n(x− 3)n

∣∣∣∣
= lim
n→∞

∣∣∣∣ (−1)(x− 3)(2n+ 1)

2n+ 3

∣∣∣∣
= |x− 3| lim

n→∞

∣∣∣∣−(2n+ 1)

2n+ 3

∣∣∣∣
= |x− 3|.



We get a limit of L = |x− 3|. To find the interval of convergence, we start by setting L = 1
and solving. In this case, that gives us |x − 3| = 1, which means that either x − 3 = 1 or
x−3 = −1. The first yields x = 4 and the second yields x = 2. If 2 < x < 4, then |x−3| < 1,
and the Ratio Test says that the series converges. Now we test the endpoints separately. If
x = 2, then our series becomes

∞∑
n=0

(−1)n
(−1)n

2n+ 1
=

∞∑
n=0

1

2n+ 1
,

which diverges (use a Limit Comparison Test on 1/n). If x = 4, then our series becomes

∞∑
n=0

(−1)n
(1)n

2n+ 1
=

∞∑
n=0

(−1)n

2n+ 1
,

which converges by the Alternating Series Test. So our interval of convergence is (2, 4].

14. The Maclaurin series for cos(x) is

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2
+
x4

24
− x6

720
+ · · · .

To get the Maclaurin series for cos(x2), we simply change every x to x2 in the above, which changes
x2n to (x2)2n = x4n. We get:

cos(x2) =

∞∑
n=0

(−1)n
x4n

(2n)!
= 1− x4

2
+
x8

24
− x12

720
+ · · · .

Then, multiplying through by x3 yields:

x3 cos(x2) =

∞∑
n=0

(−1)n
x4n+3

(2n)!
= x3 − x7

2
+
x11

24
− x15

720
+ · · · .

To integrate that, we just integrate each term separately. We get the sigma notation for the new
series by just integrating the inside of the existing sigma. So we get∫

x3 cos(x2) dx = C +

∞∑
n=0

(−1)n
x4n+4

(4n+ 4)(2n)!
= C +

x4

4
− x8

16
+

x12

12 · 24
− x16

16 · 720
+ · · · .

15. The Maclaurin series for ex is

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+ · · · .

To get the Maclaurin series for ex − 1/x, we simply subtract off the first term, then divide every
term through by x:

ex − 1

x
=

∞∑
n=1

xn−1

n!
= 1 +

x

2
+
x2

6
+
x3

24
+ · · · .



To integrate that, we just integrate each term separately. We get the sigma notation for the new
series by just integrating the inside of the existing sigma. So we get:∫

ex − 1

x
dx = C + x+

x2

4
+
x3

18
+
x4

96
+ · · · = C +

∞∑
n=1

xn

n · n!
.


