Useful formulas

1. (Arc length) Length of the curve $y=f(x)$ from $x=a$ to $x=b: \int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
2. (Surface area) Area of the surface of revolution obtained by rotating $y=f(x)$ from $x=a$ to $x=b$ about the x-axis (assuming $y \geq 0$): $2 \pi \int_{a}^{b} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
3. (Surface area) Area of the surface of revolution obtained by rotating $y=f(x)$ from $x=a$ to $x=b$ about the y-axis: $2 \pi \int_{a}^{b} x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
4. (Slope of a parametric curve) $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$.
5. (Second derivative of a parametric curve) $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}$.
6. (Parametric arc length) Length of $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$ between $t=a$ and $t=b: \int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.
7. (Parametric area) Area between a parametric curve and the x-axis: $\int_{a}^{b} y \frac{d x}{d t} d t$. (This formula is valid when y is positive and x is increasing with t, or when y is negative and x is decreasing. In the remaining two cases, add a minus sign to the formula.)
8. (Relations between rectangular and polar coordinates) If the same point is represented by rectangular coordinates (x, y) and by polar coordinates (r, θ), then $x=r \cos (\theta), y=r \sin (\theta), r^{2}=x^{2}+y^{2}$, and $\tan (\theta)=\frac{y}{x}$.
9. (Non-uniqueness of polar coordinates) If the same point is represented by two sets of polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$, then either (i) $r_{1}=r_{2}$ and $\theta_{1}-\theta_{2}$ is an even multiple of π, or (ii) $r_{1}=-r_{2}$ and $\theta_{1}-\theta_{2}$ is an odd multiple of π, or (iii) $r_{1}=r_{2}=0$.
10. (Polar arc length) The length of the curve $r=f(\theta)$ from $\theta=a$ to $\theta=b$ is $\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.
11. (Polar area) The area enclosed by the curve $r=f(\theta)$ and the rays $\theta=a$ and $\theta=b$ is $\frac{1}{2} \int_{a}^{b} r^{2} d \theta$.
12. (Useful trigonometric identities) $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$ and $\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-$ $\sin (\alpha) \sin (\beta)$. (Note that the usual double-angle identities can be obtained from these by putting $\alpha=\beta=$ $\theta)$.
