Useful formulas

- 1. (Arc length) Length of the curve y = f(x) from x = a to x = b: $\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$.
- 2. (Surface area) Area of the surface of revolution obtained by rotating y = f(x) from x = a to x = b about the x-axis (assuming $y \ge 0$): $2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$.
- 3. (Surface area) Area of the surface of revolution obtained by rotating y = f(x) from x = a to x = b about the y-axis: $2\pi \int_{a}^{b} x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$.
- 4. (Slope of a parametric curve) $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$.
- 5. (Second derivative of a parametric curve) $\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{\frac{d}{dt} \left[\frac{dy}{dx} \right]}{\frac{dx}{dt}}.$
- 6. (Parametric arc length) Length of $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$ between t = a and t = b: $\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$.
- 7. (Parametric area) Area between a parametric curve and the x-axis: $\int_{a}^{b} y \frac{dx}{dt} dt$. (This formula is valid when y is positive and x is increasing with t, or when y is negative and x is decreasing. In the remaining two cases, add a minus sign to the formula.)
- 8. (Relations between rectangular and polar coordinates) If the same point is represented by rectangular coordinates (x, y) and by polar coordinates (r, θ) , then $x = r \cos(\theta)$, $y = r \sin(\theta)$, $r^2 = x^2 + y^2$, and $\tan(\theta) = \frac{y}{r}$.
- 9. (Non-uniqueness of polar coordinates) If the same point is represented by two sets of polar coordinates (r_1, θ_1) and (r_2, θ_2) , then either (i) $r_1 = r_2$ and $\theta_1 \theta_2$ is an even multiple of π , or (ii) $r_1 = -r_2$ and $\theta_1 \theta_2$ is an odd multiple of π , or (iii) $r_1 = r_2 = 0$.
- 10. (Polar arc length) The length of the curve $r = f(\theta)$ from $\theta = a$ to $\theta = b$ is $\int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$.
- 11. (Polar area) The area enclosed by the curve $r = f(\theta)$ and the rays $\theta = a$ and $\theta = b$ is $\frac{1}{2} \int_{a}^{b} r^{2} d\theta$.
- 12. (Useful trigonometric identities) $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$ and $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$. (Note that the usual double-angle identities can be obtained from these by putting $\alpha = \beta = \theta$).