
MA 141 – Calculus II April 12, 2016

Useful formulas

1. (Arc length) Length of the curve y = f(x) from x = a to x = b:
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2. (Surface area) Area of the surface of revolution obtained by rotating y = f(x) from x = a to x = b about

the x-axis (assuming y ≥ 0): 2π
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3. (Surface area) Area of the surface of revolution obtained by rotating y = f(x) from x = a to x = b about

the y-axis: 2π
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4. (Slope of a parametric curve)
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5. (Second derivative of a parametric curve)
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6. (Parametric arc length) Length of

{
x = f(t)

y = g(t)
between t = a and t = b:
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7. (Parametric area) Area between a parametric curve and the x-axis:
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dt
dt. (This formula is valid when

y is positive and x is increasing with t, or when y is negative and x is decreasing. In the remaining two
cases, add a minus sign to the formula.)

8. (Relations between rectangular and polar coordinates) If the same point is represented by rectangular
coordinates (x, y) and by polar coordinates (r, θ), then x = r cos(θ), y = r sin(θ), r2 = x2 + y2, and
tan(θ) = y

x .

9. (Non-uniqueness of polar coordinates) If the same point is represented by two sets of polar coordinates
(r1, θ1) and (r2, θ2), then either (i) r1 = r2 and θ1− θ2 is an even multiple of π, or (ii) r1 = −r2 and θ1− θ2
is an odd multiple of π, or (iii) r1 = r2 = 0.

10. (Polar arc length) The length of the curve r = f(θ) from θ = a to θ = b is
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11. (Polar area) The area enclosed by the curve r = f(θ) and the rays θ = a and θ = b is
1

2
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12. (Useful trigonometric identities) sin(α+β) = sin(α) cos(β)+cos(α) sin(β) and cos(α+β) = cos(α) cos(β)−
sin(α) sin(β). (Note that the usual double-angle identities can be obtained from these by putting α = β =
θ).


