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1 Unit conversion

Since this calculation involves derivatives, it is more convenient to measure
information in nats. If desired, one can convert all results to bits at the end.
One simple way to remember the conversion factor is to compute the entropy
of a fair coin toss in both systems. Let E be the system of events (h, t), each
occurring with probability 1/2. In bits, we have

H(E) =
1

2
log2

(
1

1/2

)
+

1

2
log2

(
1

1/2

)
= 1 bit

while in nats we have

H(E) =
1

2
ln

(
1

1/2

)
+

1

2
ln

(
1

1/2

)
= ln(2) nats.

Therefore
1 bit = ln(2) nats ≈ 0.693 nats.

Equivalently,

1 nat =
1

ln(2)
bits ≈ 1.443 bits.

2 Simplification of the Lagrange multiplier equa-
tions

Certain simplifications of the Lagrange multiplier equations are easier to see in
the context of a general channel than in the context of any particular channel; we
begin with these. The material in this section closely parallels Subsection 3.4.2
and Theorem 3.4.3 in the text.

Consider a channel with input alphabet A = {a1, . . . , an} and output alpha-
bet B = {b1, . . . , bk}. As usual, let qi,j denote the probability of the transition
ai → bj , i.e. the conditional probability that the output of the channel is bj ,
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given that the input is ai. Also as usual, let p1, . . . , pn denote the input fre-
quencies; in other words, pi is the probability that the input is ai. Finally, let
A and B be the systems of events associated with the input alphabet and the
output alphabet, respectively.

Let F (p1, . . . , pn) denote the mutual information I(A,B), regarded as a func-
tion of the input frequencies p1, . . . , pn, with the transition probabilities treated
as constants. We wish to maximize the value of F , subject to the constraint

g(p1, . . . , pn) = p1 + · · ·+ pn − 1 = 0.

Using the method of Lagrange multipliers, we look for points where the gradient
of F is parallel to the gradient of g, that is, points where

∇F = λ∇g

for some scalar λ. Since ∂g
∂ps

= 1 for all s ∈ {1, . . . , n}, this condition is equiva-
lent to

∂F

∂ps
= λ ∀s ∈ {1, . . . , n}. (1)

Now we compute the mutual information explicitly. By definition, the prob-
ability that the input is ai is pi. The probability that the input is ai and the
output is bj is piqij . Finally, the probability that the output is bj is

∑
i piqij .

Thus, the mutual information (in nats) is

F (p1, . . . , pn) =
∑
i,j

piqij ln

(
piqij

pi
∑

t ptqtj

)

=
∑
i,j

piqij

(
ln (qij)− ln

(∑
t

ptqtj

))
.

Next let δ denote the Kronecker delta, i.e. δij equals one if i = j and zero
otherwise. By the product rule, we have

∂F

∂ps
=
∑
i,j

(
δisqij

(
ln(qij)− ln

(∑
t

ptqtj

))
− piqij

qsj∑
t ptqtj

)

=
∑
j

(
qsj

(
ln(qsj)− ln

(∑
t

ptqtj

))
−
∑

i piqij∑
t ptqtj

qsj

)

=
∑
j

(
qsj ln

(
qsj∑
t ptqtj

))
−
∑
j

qsj

=
∑
j

(
qsj ln

(
qsj∑
t ptqtj

))
− 1.

Setting this equal to λ gives∑
j

qsj ln

(
qsj∑
t ptqtj

)
= λ+ 1.
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Putting C = λ + 1 and recalling the constraint g(p1, . . . , pn) = 0 gives the
capacity equations∑

j

qsj ln

(
qsj∑
t ptqtj

)
= C ∀s ∈ {1, . . . , n}

∑
i

pi = 1

(2)

which coincide with the equations appearing in Theorem 3.4.3 in the text.
Finally, suppose (p1, . . . , pn) is a solution of eq. (2). Then

F (p1, . . . , pn) =
∑
i,j

piqij ln

(
qij∑
t ptqtj

)
=
∑
i

piC

= C

so that C is the channel capacity.

3 The asymmetric binary channel

Now consider a channel with A = B = {0, 1} and the following transition
probabilities:

P (0→ 0) = α

P (0→ 1) = 1− α
P (1→ 1) = β

P (1→ 0) = 1− β.

For consistency with the notation of the previous section, we put a1 = b1 = 0
and a2 = b2 = 1; thus

Q =

[
q11 q12
q21 q22

]
=

[
α 1− α

1− β β

]
.

The capacity equation (2) becomes

α ln

(
α

p1α+ p2(1− β)

)
+ (1− α) ln

(
1− α

p1(1− α) + p2β

)
= C

(1− β) ln

(
1− β

p1α+ p2(1− β)

)
+ β ln

(
β

p1(1− α) + p2β

)
= C

(3)

and, of course, p1 + p2 = 1. Setting the left hand sides equal to each other,
expanding the logarithms, and rearranging terms gives

(1− α− β)(ln(p1α+ p2(1− β))− ln(p1(1− α) + p2β)) =

− α ln(α)− (1− α) ln(1− α) + (1− β) ln(1− β) + β ln(β).
(4)
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Assume for the moment that 1− α− β 6= 0. Then we have

ln

(
p1α+ p2(1− β)

p1(1− α) + p2β

)
=
α ln(α) + (1− α) ln(1− α) + (1− β) ln(1− β) + β ln(β)

1− α− β
.

The expression on the right hand side is a constant that will appear frequently
in the sequel; call it K. Exponentiating, we obtain

p1α+ p2(1− β)

p1(1− α) + p2β
= eK . (5)

Next, let

p1 = p

p2 = 1− p.

Substituting into eq. (5) gives

pα+ (1− p)(1− β) = eK(p(1− α) + (1− p)β).

After a little rearrangement, this becomes

p(α+ β − 1− eK(1− α− β)) = eKβ + β − 1

whence the optimal input frequencies are

p1 = p =
β(eK + 1)− 1

(α+ β − 1)(eK + 1)

p2 = 1− p =
α(eK + 1)− eK

(α+ β − 1)(eK + 1)
.

(6)

To compute the channel capacity, we first use the optimal input frequencies
to compute the optimal output frequencies:

p1α+ p2(1− β) =
αβ(eK + 1)− α+ (1− β)α(eK + 1)− (1− β)eK

(α+ β − 1)(eK + 1)

=
αeK + βeK − eK

(α+ β − 1)(eK + 1)

=
eK

eK + 1

p1(1− α) + p2β =
(1− α)β(eK + 1)− (1− α) + αβ(eK + 1)− βeK

(α+ β − 1)(eK + 1)

=
1

eK + 1
.

Substituting these into eq. (3) gives the channel capacity:

C = α ln

(
α

p1α+ p2(1− β)

)
+ (1− α) ln

(
1− α

p1(1− α) + p2β

)
= α ln(α)− α ln

(
eK

eK + 1

)
+ (1− α) ln(1− α)− (1− α) ln

(
1

eK + 1

)
= α ln(α) + (1− α) ln(1− α)− αK + ln(eK + 1).
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Figure 1: The capacity of the binary asymmetric channel

Finally, we consider the case where 1 − α − β = 0. In this case, the left
hand side of eq. (4) collapses to zero, and after eliminating β via the identity
β = 1 − α, so does the right hand side. Thus, every (p1, p2) with p1 + p2 = 1
satisfies the capacity equation, and we may find the capacity by substituting
any such pair we please into eq. (3). One convenient choice is p1 = 1, p2 = 0,
which shows immediately that in this case the channel capacity is zero.

4 Visualization

Our formulas for the channel capacity and the optimal input frequencies are
rather complicated, and it is not straightforward to visualize their behavior, so
there is some advantage in using a computer algebra system to produce their
graphs. This can be done in many different systems; here we use the free,
open source system Sage (see http://www.sagemath.org). The script below
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Figure 2: The optimal input frequency p1

will produce the graph of the channel capacity, as well as the graphs of the
optimal input frequencies.

# Graphs of the channel capacity and optimal input

frequencies of the

# binary asymmetric channel.

def K(a,b):

return (((1-b)*ln(1-b)+b*ln(b)-a*ln(a) -(1-a)*ln(1-a))

/ (1-a-b))

def C(a,b):

if a+b == 1:

return (0)

k = K(a,b)

return(RR((a*ln(a) + (1-a)*ln(1-a) - a*k + ln(1 +

exp(k)))/ln(2)))

def P1(a,b):
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Figure 3: The optimal input frequency p2

# The initial code block avoids the ugliness near a

+ b = 1, where

# the optimal frequencies are undefined . Placing

zeros along most

# of this line creates a small black strip in the

graph , and placing

# ones at the corners we ensure that the graph uses

the same color

# scheme as the capacity graph.

if abs(a+b-1) < 0.0001:

if a==0 or a==1:

return (1)

return (0)

k = K(a,b)

return(RR((b*(exp(k) + 1) - 1)/((a+b-1)*(exp(k)+1))))

def P2(a,b):

if abs(a+b-1) < 0.0001:
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if a==0 or a==1:

return (1)

return (0)

k = K(a,b)

return(RR((a*(exp(k)+1)-exp(k))/((a+b-1)*(exp(k)+1))))

c=density_plot(C, (0,1), (0,1), plot_points =200,

cmap=’gnuplot ’, aspect_ratio =1,

figsize =6)

c.save(’c.eps’, aspect_ratio =1)

p1=density_plot(P1, (0,1), (0,1), plot_points =200,

cmap=’gnuplot ’, aspect_ratio =1,

figsize =6)

p1.save(’p1.eps’, aspect_ratio =1)

p2=density_plot(P2, (0,1), (0,1), plot_points =200,

cmap=’gnuplot ’, aspect_ratio =1,

figsize =6)

p2.save(’p2.eps’, aspect_ratio =1)

The graph of the channel capacity is shown in Figure 1. The parameter
α is plotted on the horizontal axis, while β is on the vertical axis. Warmer
colors indicate higher capacity; bright yellow corresponds to a capacity of 1 bit
per transmission, visible at α = β = 1 and also at α = β = 0, while black
corresponds to capacity zero, visible along the line α+ β = 1.

The graphs of the optimal frequencies are shown in Figures 2 and 3. The
optimal frequencies are undefined along the line α + β = 1. Note that the
frequencies are rather insensitive to α and β, hovering near 1/2 except when
one of these (but not the other) takes a really extreme value. This conforms to
the intuition that one can’t really move information by sending, say, ones almost
all the time—one must use a mixture of the two symbols to convey anything.
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